Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 1. P. 5-14

RADIATION BIOLOGY

L.V. Shulenina1, V.F. Mikhailov1, E.V. Ledin2, N.F. Raeva1, G.D. Zasukhina3

Evaluation of P53-Dependent System of Maintaining the Genome Stability by Content of MicroRNA and MRNA in Blood of Cancer Patients

1. A.I. Burnasyan Federal Medical Biophysical Center of FMBA, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Treatment-and-reabilitation Center of Ministry of Health of Russia, Moscow, Russia; 3. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia

ABSTRACT

Purpose: To explore the content of mature mir125b, mir21, mir34a, mir145, let7a, mir16 and mRNA of P53, MDM2, MDMX genes, modulating activity of p53-dependent system of maintaining the genome stability in blood of cancer patients before and after radiotherapy for evaluation of disease prognosis and identification of the most promising targets for pharmacological correction.

Material and methods: We used the whole blood of patients with prostate cancer, breast cancer, head and neck cancer which was received before and after radiation therapy. The control was the blood of healthy donors. Radiation therapy was carried out on the equipment ROCUS (60Co). The total dose of irradiation was about 70 Gy. The content of the mature microRNA and mRNA was determined using the quantative reverse-transcription real-time PCR with gene-specific primers. Relative expression was calculated according to the method ΔΔCt. Statistical analysis of the results was carried out by the Mann-Whitney and Wilcoxon tests. Data are presented as median and quartiles, normalized to median of control group accepted as 1.

Results: The low expression of MDMX and high content of both mir21 and let7a were found in the blood of prostate cancer patients in comparison with blood of donors. Radiotherapy increased mir34a, but did not influence on another indicators. The breast cancer patients have high level mir145, mir21 and mir 34a before radiotherapy. Expression of MDM2 after radiotherapy declined in blood of these persons. The patients with head and neck cancer revealed significantly high level of mir21, mir145, mir34a and radiotherapy caused an extension of let7a.

Conclusion: The low efficiency of functioning P53- dependent system, maintaining the genome stability is the precondition factor of tumors’ high radioresistance. Inactivation of p53 in cancer cells is due to mutations in the p53 gene, increased activity of the endogenous inhibitors of MDM2, MDMX and balance of mature mir16, 21, 34, 125, 145. It was found the increase of mir145, mir21, mir34a, and let7a content in blood of oncologic patients. It is presumed that the changes of expression these indicators support the information about the effectivity of therapy and for development of p53-dependent-system-drugs.

Key words: radiotherapy, cancer patients, genome stability, p53-dependent system maintaining mir125b, mir21, mir34a, mir145, mir16, let7a, targeted compounds

REFERENCES

  1. Begg A.C., Stewart F.A., Vens C. Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 2011. Vol. 11. P. 239-253.
  2. Zheltukhin A.O., Chumakov P.M. Povsednevnye i indutsirovannye funktsii gena R53. Uspekhi biol. khimii. 2010. Vol. 50. P. 447-516.
  3. Maltzman W., Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 1984. Vol. 4. No. 9. P. 1689-1694.
  4. Kastan M.B., Onykwere O., Sidransky D. et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991. Vol. 51. P. 6304-6311.
  5. Graeber T.G., Peterson J.F., Tsai M. et al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 1994. Vol. 14. No. 9. P. 6264-6277.
  6. Feki A., Irminger-Finger I. Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit. Rev. Oncol. Hematol. 2004. Vol. 52. No. 2. P. 103-116.
  7. Momand J., Jung D., Wilczynski S., Niland J. The MDM2 gene amplification database. Nucleic Acids Res. 1998. Vol. 26. No. 15. P. 3453-3459.
  8. Shvarts A., Steegenga W.T., Riteco N. et al. MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 1996. Vol. 15. No. 19. P. 5349-5357.
  9. Kolesnikov N.N., Titov S.E., Veryaskina Yu.A. et al. MikroRNK, evolyutsiya i rak. Tsitologiya, 2013. Vol. 55. No. 3. P. 159-164.
  10. Calin G.A., Liu C.G., Sevignani C. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. No. 32. P. 11755-11760.
  11. Zhao J.J., Yang J., Lin J. et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv. Syst. 2009. Vol. 25. No. 1. P. 13-20.
  12. Tenzin W., Lhakhang, Chaudhry M.A. Interactome of radiation-Induced microRNA-predicted target genes. Compar. Func. Genomics. 2012. ID 569731. P. 12.
  13. Halimi M., Mohsen Asghari S., Sariri R. et al. Cellular response to ionizing radiation: A microRNA story. IJMCM. 2012. Vol. 11. No. 4. P. 178-184.
  14. Valadi H., Ekstrom K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 2007. Vol. 9. No. 6. P. 654-659.
  15. Olivier M., Eeles R., Hollstein M. et al. The IARCTP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002. Vol. 19. No. 6. P. 607-614.
  16. Ventura A., Kirsch D.G., McLaughlin M.E. et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007. Vol. 445. P. 661-665.
  17. Suad O., Rozenberg H., Brosh R. et al. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J. Mol. Biol. 2009. Vol. 385. No. 1. P. 249-265.
  18. Mandinova A., Lee S.W. The p53 Pathway as a Target in Cancer Therapeutics: Obstacles and Promise. Sci. Transl. Med. 2011. Vol. 3. No. 64. P. 1-13.
  19. Secchiero P., Bosco R., Celeghini C., Zauli G. Recent advances in the therapeutic perspectives of Nutlin-3. Curr. Pharm. Des. 2011. Vol. 17. No. 6. P. 569-577.
  20. Reed D., Shen Y., Shelat A.A. et al. Identification and characterization of the first small molecule inhibitor of MDMX. J. Biol. Chem. 2010. Vol. 285. P. 10786-10796.
  21. Sorenson G.D., Pribish D.M., Valone F.H. et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 1994. Vol. 3. No. 1. P. 67-71.
  22. Wagner J. Free DNA — new potential analyte in clinical laboratory diagnostics? Biochem. Med. (Zagreb), 2012. Vol. 22. No. 1. P. 24-38.
  23. Ziegler A., Zangemeister-Wittke U., Stahel R.A. Circulating DNA: a new diagnostic gold mine? Cancer Treat. Rev. 2002. Vol. 28. No. 5. P. 255-271.
  24. Friel A.M., Corcoran C., Crown O’Driscoll L. Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Res. Treat. 2010. Vol. 123. No. 3. P. 613-625.
  25. Gormally E., Vineis P., Matullo G. et al. TP53and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence. A Prospective Study.Cancer Res. 2006. Vol. 66. No. 13. P. 6871-6876.
  26. Mikhailov V.F., Ushenkova L.N., Shagirova Zh.M., Shulenina L.V. Issledovanie mutatsii v onkogenakh i genakh supressorakh opukholei kak podkhod k izyskaniyu sposobov individual'nogo prognoza otdalennykh posledstvii oblucheniya. Radiats. biologiya. Radioekologiya. 2010. vol. 50. No. 2. P. 128-133.
  27. Dongsheng P., Zhang Y., Zheng J. Regulation of p53: a collaboration between Mdm2 and MdmX. Oncotarget. 2012. Vol. 3. No. 3. P. 228-235.
  28. Manfredi J.J. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes. Dev. 2010. Vol. 24. No. 15. P. 1580-1589.
  29. Pan B.T., Johnstone R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983. Vol. 33. No. 3. P. 967-978.
  30. Raposo G., Nijman H.W., Stoorvogel W. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 1996. Vol. 183. No. 3. P. 1161-1172.
  31. Blanchard N., Lankar D., Faure F. et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 2002. Vol. 168. No. 7. P. 3235-3241.
  32. Van Niel G., Raposo G., Candalh C. et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001. Vol. 121. No. 2. P. 337-349.
  33. Mears R., Craven R.A., Hanrahan S. et al. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics. 2004. Vol. 4. No. 12. P. 4019-4031.
  34. Vickers K.C., Remaley A.T. Lipid-based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol. 2012. Vol. 23. No. 2. P. 91-97.
  35. Arroyo J.D., Chevillet J.R., Kroh E.M. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA. 2011. Vol. 108. No. 12. P. 5003-5008.
  36. Li Y., Elashoff D., Oh M. et al. Serum circulating human mRNA profiling and Its utility for oral cancer detection. J. Clin. Oncol. 2006. Vol. 24. No. 11. P. 1754-1776.
  37. Wakuma T., Lozano G. MDM2, an introduction. Mol. Cancer Res. 2003. Vol. 1. No. 14. P. 993-1000.
  38. Lukas J., Gao D.Q., Keshmeshian M. et al. Alternative and aberrant messenger RNA splicing of the MDM2 oncogene in invasive breast cancer. Cancer Res. 2001. Vol. 61. No. 7. P. 3212-3219.
  39. Owrangi B., Habibagahi M., Hosseini A. et al. MDM2, E-cadherin, Survivin and Her2 mRNA Status in Peripheral Blood of Patients with Breast Cancer. Middle East J. Cancer. 2013. Vol. 4. No. 1. P. 7-14.
  40. Zhang Z., Li M., Wang H. et al. Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. PNAS, 2003. Vol. 100. No. 20. P. 11636-11641.
  41. Wang H., Yan C. A Small-Molecule p53 activator induces apoptosis through Inhibiting MDMX expression in breast cancer cells. Neoplasia, 2011. Vol. 13. No. 7. P. 611-619.
  42. Yaman A.F., Kovancilar M., Dizdar Y. et al. Investigation of miR-21, miR-141 and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol. 2011. Vol. 32. No. 3. P. 583-588.
  43. Roth C., Rack B., Muller V. et al. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010. Vol. 12. No. 6. P. 1-8.
  44. Komatsu S., Ichikawa D., Takeshita H. et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Brit. J. Cancer. 2011. Vol. 105. No. 1. P. 104-111.
  45. Takamizawa J., Konishi H., Yanagisawa K. et al. Reduced expression of the let-7 micrornas in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004. Vol. 64. No. 11. P. 3753-3756.
  46. Wing Pui Tsang, Tim Tak Kwok. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis, 2008. Vol. 13. No. 10. P. 1215-1222.
  47. Feng Y., Zhu J., Ou C. et al. MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Brit. J. Cancer. 2014. Vol. 110. P. 2300-2309.
  48. Rocca G., Shi Bin, Audia A. et al. Regulation of microRNA-145 by growth arrest and differentiation. Exper. Cell Res. 2011. Vol. 317. No. 4. P. 488-495.
  49. Seok-Jun Kim, Ji-Sun Oh, Ji-Young Shin et al. Development of microRNA-145 for therapeutic application in breast cancer. J. Controlled Release. 2011. Vol. 155. No. 3. P. 427-434.
  50. Xin Yan, Hongwei Liang, Ting Deng et al. The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells. Mol. Cancer. 2013. Vol. 12. No. 1. P. 1-11.
  51. He L., He X., Lim L.P.,et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007. Vol. 447. No. 7148. P. 1030-1038.
  52. Rokavec M., Li H., Jiang L., Hermeking H. The p53/miR-34 axis in development and disease. J. Mol. Cell. Biol. 2014. Vol. 6. No. 3. P. 214-230.
  53. Bader A.G. miR-34 — a microRNA replacement therapy is headed to the clinic. Front Genet. 2012. Vol. 3. No. 120. P. 1-9.
  54. Dutta K.K., Zhong Y., Liu Y. et al. Association of microRNA-34aoverexpression with proliferation is cell type-dependent. Cancer Sci. 2007. Vol. 98. No. 12. P. 1845-1852.
  55. Sun Y.-, Lin K.-Y., Chen Y.-Q. Diverse functions of miR-125 family in different cell contexts. J. Hematol. & Oncol. 2013. Vol. 6. No. 6. P. 1-8.
  56. Tang , Zhang R., He Y. et al. MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One. 2012. Vol. 7. No. 5. P. e35435.
  57. Oh J.S., Kim J.J., Byun J.Y., Kim I.A. Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 76. No. 1. P. 5-8.
  58. Zhu Y., Yu X., Fu H. et al. MicroRNA-21 is involved in ionizing radiation-promoted liver carcinogenesis. Int. J. Clin. Exp. Med. 2010. Vol. 3. No. 3. P. 211-222.

For citation: Shulenina LV, Mikhailov VF, Ledin EV, Raeva NF, Zasukhina GD. Evaluation of P53-Dependent System of Maintaining the Genome Stability by Content of MicroRNA and MRNA in Blood of Cancer Patients. Medical Radiology and Radiation Safety. 2015;60(1):5-14. Russian.

PDF (RUS) Full-text article (in Russian)