Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 44–49

K.Yu. Slashchuk, P.O. Rumyantsev, M.V. Degtyarev, S.S. Serzhenko, O.D. Baranova, A.A. Trukhin, Ya.I. Sirota

Molecular Imaging of Neuroendocrine Tumors by Somatostatin-Receptor Scintigraphy (SPECT/CT) with 99mTc-Tektrotyd

National Medical Research Centre of Endocrinology, Moscow, Russia

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms constituting about 0.5 % of all cancer cases. In recent years, there has been a significant increase in the incidence of NETs, which is primarily due to the active development and improvement of medical imaging technologies. Successful treatment and prognosis for patients with NETs strongly depend on the stage of the disease. One of the effective methods of visualization and staging NETs in nuclear medicine is somatostin receptor scintigraphy (SRS), which is based on the use of partial somatostatin receptor agonists labeled with radioactive isotopes. The article presents an analysis of 55 patients with NETs of various localizations who underwent scintigraphy and SPECT/CT. Radiopharmaceutical was used as a tracer for SRS. It was prepared on the basis of a lyophilisate developed by Polatom (Poland) — Tektrotyd, labeled with 99mTc. According to the results of the study SRS with 99mTc-Tektrotyd is informative in the topical diagnosis of NETs, especially when PET/CT scan with 68Ga-labeled peptides is not available. Sensitivity varies depending on the NET localization. It is necessary to continue researches on the diagnostic value of SRS with 99mTc-Tektrotyd for tumors, in the pathogenesis of which somatostatin receptors play a significant role.

Key words: somatostatin-receptor scintigraphy, SPECT/CT, tektrotyd, octreoscan, neuroendocrine tumors

For citation: Slashchuk KYu, Rumyantsev PO, Degtyarev MV, Serzhenko SS, Baranova OD, Trukhin AA, Sirota YaI. Molecular Imaging of Neuroendocrine Tumors by Somatostatin-Receptor Scintigraphy (SPECT/CT) with 99mTc-Tektrotyd. Medical Radiology and Radiation Safety. 2020;65(2):44-9. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-44-49

References

  1. Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology. 2004;80 Suppl 1:3-7. DOI: 10.1159/000080731.
  2. Yao JC, Hassan M, Phan A, et al. One hundred years after «carcinoid»: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063-72. DOI: 10.1200/JCO.2007.15.4377.
  3. Williams E. The Classification of Carcinoid Tumours. Lancet. 1963;281(7275):238-9. DOI: 10.1016/s0140-6736(63)90951-6.
  4. Rindi G, Arnold R, Bosman FT, et al. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Hruban RH, et al, editors. WHO classification of tumors of the digestive system. Lyon: IARC; 2010. p. S13-S14.
  5. Tang LH, Basturk O, Sue JJ, Klimstra DS. A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. Am J Surg Pathol. 2016;40(9):1192-202. DOI: 10.1097/PAS.0000000000000662.
  6. Баранова ОД, Румянцев ПО, Слащук КЮ, Петров ЛО. Радионуклидная визуализация и терапия у пациентов с нейроэндокринными опухолями. Эндокринная хирургия. 2017;11(4):178-90. DOI: 10.14341/serg9572 [Baranova OD, Roumiantsev PO, Slashchuk KY, Petrov LO. Radionuclide imaging and therapy in patients with neuroendocrine tumors. Endocrine Surgery. 2017;11(4):178-90. (in Russ.)].
  7. Kunikowska J, Lewington V, Krolicki L. Optimizing Somatostatin Receptor Imaging in Patients with Neuroendocrine Tumors: The Impact of 99mTc-HYNICTOC SPECT/SPECT/CT Versus 68Ga-DOTATATE PET/CT Upon Clinical Management. Clin Nucl Med. 2017;42(12):905-11. DOI: 10.1097/RLU.0000000000001877.
  8. Czepczyński R, Parisella MG, Kosowicz J, Mikołajczak R, Ziemnicka K, Gryczyńska M, Signore A. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur J Nucl Med and Mol Imaging. 2007;34(10):1635-45. DOI: 10.1007/s00259-007-0479-1.
  9. Sergieva S, Robev B, Dimcheva M, Fakirova A, Hristoskova R. Clinical application of SPECT-CT with 99mTc-Tektrotyd in bronchial and thymic neuroendocrine tumors (NETs). Nucl Med Review. 2016;19(2):81-7. DOI: 10.5603/NMR.2016.0017.
  10. Artiko V, Afgan A, Petrovič J, Radovič B, Petrovič N, Vlajković M, Obradović V. Evaluation of neuroendocrine tumors with 99mTc-EDDA/HYNIC TOC. Nucl Med Review. 2016;19(2):99-103. DOI: 10.5603/NMR.2016.0020.
  11. Garai I, Barna S, Nagy G, & Forgács A. Limitations and pitfalls of 99mTc-EDDA/ /HYNIC-TOC (Tektrotyd) scintigraphy. Nucl Med  Review. 2016;19(2):93-8. DOI: 10.5603/NMR.2016.0019.
  12. Al-Chalabi H, Cook A, Ellis C, Patel CN, Scarsbrook AF. Feasibility of a streamlined imaging protocol in technetium-99m-Tektrotyd somatostatin receptor SPECT/CT. Clinical Radiology. 2018;73(6):527-34. DOI: 10.1016/j.crad.2017.12.019.
  13. Briganti V, Cuccurullo V, Di Stasio GD, Mansi, L. (2019). Gamma emitters in pancreatic endocrine tumors imaging in the PET era: is there a clinical space for 99mTc-peptides? Current Radiopharmaceuticals. DOI: 10.2174/1874471012666190301122524.
  14. Boutsikou E, Porpodis K, Chatzipavlidou V, Hardavella G, Gerasimou G, Domvri K, Zarogoulidis K. Predictive Value of 99mTC-hynic-toc Scintigraphy in Lung Neuroendocrine Tumor Diagnosis. Technology in Cancer Research & Treatment, 2019;18:1-18. DOI: 10.1177/1533033819842586.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Informed consent. All patients signed an informed consent to participate in the study.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 18.12.2019.

Accepted for publication: 12.03.2020.