Л.М. Рождественский

РОЛЬ ВЕЛИЧИН ВЕСОВЫХ ТКАНЕВЫХ МНОЖИТЕЛЕЙ В РЕГЛАМЕНТАЦИИ РАДИАЦИОННОГО ВОЗДЕЙСТВИЯ ПЛУТОНИЯ-239 В ТЕРМИНАХ ОРГАННОЙ ЭКВИВАЛЕНТНОЙ И ЭФФЕКТИВНОЙ ДОЗ

L.M. Rozhdestvensky

The Role of Tissue Weighting Factors Magnitudes in Regulations of Plutonium-239 Exposure in Termines of Organ Radiation Weighted Dose and Effective Dose

РЕФЕРАТ

<u>Цель</u>: Исследовать зависимость оценок радиоканцерогенного эффекта инкорпорированного ²³⁹Pu от величин как стандартных, так и специально подобранных тканевых весовых множителей (W_t), предназначенных для расчета эффективной дозы.

Материал и методы: Использовали литературные данные из регистра ПО "Маяк" о полученных персоналом дозах от инкорпорированного 239 Ри в органах основного депонирования (ООД) радионуклида и смертности от рака этих органов за многолетний период наблюдения. Канцерогенный эффект 239 Ри оценивали по критериям: разбросу EAR/ 10^4 ч.-л./Зв для ООД плутония и качества аппроксимации дозовой зависимости частоты возникновения раков в указанных органах. Проанализирована связь между величинами эффективной дозы и эквивалентной дозы на легкое в зависимости от подобранных величин W_t для ООД 239 Ри. W_t для когорты "Маяка" подбирали по принципам корреляции с эксцессами смерти от рака ООД плутония по аналогии с подбором МКРЗ стандартных W_t на основании данных по когорте LSS.

Результаты: Анализ показал, что при использовании специально подобранных для когорты "Маяка" значений W_t существенно уменьшается разброс EAR/ 10^4 ч.-л./Зв (здесь Зв — единица эффективной дозы) для ООД плутония по сравнению с расчетом этого показателя на базе стандартных W_t . При аппроксимации зависимости смертности лиц с раком ООД плутония от взвешенных эквивалентных доз в этих органах в случае использования W_t для когорты "Маяка" повышается качество аппроксимации, что приводит к более точной оценке величины квазипорога радиоканцерогенного эффекта 239 Pu. При использовании W_t , подобранных для воздействия 239 Pu, снижается разница между рекомендованными MKP3 (в качестве допустимых) верхними границами эффективной дозы (20 мЗв/год) и эквивалентной дозы на внутренний орган (100 мЗв/год) вплоть до их практического совпадения в случае равенства суммы W_t для ООД плутония единице.

<u>Выводы</u>: Применение стандартных тканевых весовых множителей для расчета эффективной дозы, приводимых в Публикации 60 МКРЗ и НРБ-99, в условиях неравномерного облучения организма, частным случаем которого является расчет эффективной дозы при инкорпорации ²³⁹Ри, является некорректным. Важное значение при расчете эффективной дозы имеет соблюдение принципа равенства 1 суммы W_t , явно нарушаемого при использовании стандартных W_t в случае селективного распределения радионуклидов в организме.

Ключевые слова: радиационная безопасность, эффективная доза, эквивалентная доза, тканевые весовые множители, радиону-клиды, плутоний-239, радиоканцерогенный эффект

ABSTRACT

<u>Purpose</u>: To study how the values of an incorporated ²³⁹Pu radiocancerogenic effect depend on magnitudes of tissue weighting factors that were specially choosen for effective dose calculation in condition of the radionuclide exposure in the "Mayak" plant.

Materials and methods: There were used literature data for nuclear workers from the registry of the "Mayak" nuclear facility. These concerned absorbed doses of internal 239 Pu alpha exposure in its preferable deposit organs and of external gamma-eradiation on the one hand and the mortality from a cancer of the same organs on the other hand. The 239 Pu radiocancerogenic effect had been evaluated on the following parameters: EAR/ 104 PY/Sv and a curve "organ dose–effect" There was analysed the connection between values of effective dose and radiation weighted dose on a lung depending on chosen magnitudes of the tissue weighting factors (W_l) for the organs of 239 Pu preferable deposit. W_l for the Mayak cohort were choosen on the data base regarding an excess death of 239 Pu preferable deposit organs.

Results: The analysis showed that in case of specially choosen W_t usage dyspersion of EAR/10⁴ PY/Sv for 239 Pu preferable deposit organs is decreased in comparison with such ones evaluated by means of standard W_t recommended with ICRP. The approximation quality of the dependence "organ dose-EAR/10⁴ PY" is higher if W_t choosen for the "Mayak" cohort are used. If the sum of the W_t choosen for 239 Pu preferable deposit organs comes nearer to 1 the difference between the effective dose and the equivalent lung dose becomes insignificant.

<u>Conclusion</u>: The standard tissue weighting factors usage for the effective dose calculation in the case of partial exposure (239 Pu incorporation as an example) is incorrect. The main reason of it is the sum of standard tissue weighting factors is not equal to 1.

Key words: radiation safety, effective dose, equivalent dose, tissue weigh coefficients, radionuclides, plutonium-239, radiocancerogenic effect