DOI: 10.12737/1024-6177-2019-64-6-70-81

А.В. Хмелев

АНАЛИЗ СОСТОЯНИЯ РАДИОНУКЛИДНОГО ОБЕСПЕЧЕНИЯ ПОЗИТРОННОЙ ЭМИССИОННОЙ ТОМОГРАФИИ

Научно-исследовательский институт – Республиканский исследовательский научно-консультационный центр экспертизы Минобрнауки РФ, Москва. E-mail: ale-khmelev@yandex.ru

А.В. Хмелев – г.н.с., д.ф.-м.н., проф.

Содержание

Ввеление

- 1. Общие требования к ПЭТ-радионуклидам (PH)
- 2. Параметры ранжирования радионуклидов для применения в ПЭТ
- 3. Позитронные эмиттеры для различных применений. Критерии отбора
 - ПЭТ-исследования
 - Совместные ПЭТ- и ОФЭКТ-исследования
 - Тераностика
 - Специальные применения
- 4. Доступность позитронных эмиттеров.
- 4.1. Производство ПЭТ-радионуклидов на циклотроне
- Традиционные радионуклиды
- Экспериментальные радионуклиды
- 4.2. Генераторное производство ПЭТ-радионуклидов
- 5. Перспективы развития радионуклидного обеспечения ПЭТ Заключение

Ключевые слова: ПЭТ, позитронные эмиттеры, активность, циклотрон, радионуклидный генератор

Поступила: 28.01.2019. Принята к публикации: 09.10.2019

Введение

В радионуклидной диагностике наибольший интерес представляют радионуклидные источники у-излучения, наиболее подходящего по своим характеристикам для его детектирования вне тела пациента. Эмитируемое при радиоактивном распаде РН у-излучение переносит в виде формируемого диагностическим комплексом изображения информацию о функциональном состоянии органов и систем пациента. В случае, когда PH участвует в β+-распаде, эмитируемые им короткопробежные позитроны сами не используются для визуализации, однако производимое с их участием аннигиляционное излучение с энергией 511 кэВ оказывается востребованными и весьма информативным при его регистрации методом ПЭТ [1-4]. В этом методе позитронные эмиттеры вводятся в организм пациента как в виде ионов (³⁸K, ⁵¹Mn, ⁵²Mn, ⁸²Rb, ⁸³Sr, ¹²⁸Cs) либо отдельных атомов (^{77,79}Kr, ¹²³Xe), не требующих молекулярного носителя для доставки в область интереса, так и в связанном состоянии - в виде меченных ими молекул диагностического препарата (существует ~ 100 потенциальных РН-меток) [5].

На степень практического использования позитронных эмиттеров в диагностике методом ПЭТ влияют их ядерно-физические [5] и химические свойства, которые не зависят друг от друга и определяются ядрами и орбитальными электронами атомов соответственно. Кроме того, на практике оказываются важными доступный объем и приемлемая себестоимость производимых РН [6], а также совместимость их характеристик с клиническими требованиями и методами визуализации. Немаловажным является наличие возможности доставки меченных ими РФП к месту медицинского применения до истечения срока годности, определяемого временем жизни РН-метки, испытывающего радиоактивный распад, и деградации РФП под действием собственного ионизирующего излучения [6, 7]. Поэтому, можно ожидать, что как полезность, так и доступность разных РН для рутинного применения в ПЭТ-диагностике могут существенно различаться.

Целью данного обзора является анализ и систематизация литературных данных, касающихся широкого спектра актуальных аспектов радионуклидного обеспечения ПЭТ – от формулирования требований к РН для ПЭТ, их ранжирования по ядерно-физическим свойствам, отбора для применения в ПЭТ, в т.ч. ПЭТ, проводимой совместно с ОФЭКТ, а также в тераностике до анализа их доступности для масштабного производства и определения перспектив практического использования β⁺-излучателей.

1. Общие требования к ПЭТ-радионуклидам

Радионуклиды имеют одинаковые ядерно-физические свойства независимо от того, находятся они в виде ионов или в качестве инкорпорированных меток в молекулах. Для использования в обоих качествах в составе вводимого пациенту радиофармпрепарата (РФП), предназначенного для ПЭТ-визуализации, характеристики РН должны удовлетворять определенным общим и специальным требованиям [3, 4].

Период полураспада РН ($T_{1/2}$) должен находиться в оптимальном диапазоне, определяемом типом планируемого исследования, продолжительностью подготовки пациента и проведения ПЭТ-исследования. Если $T_{1/2}$ очень короткий, то это ограничивает время приготовления РФП, доставки РФП с малым сроком годности к месту его клинического применения и проведения процедур инъекции и последующих измерений. Так, например, радионуклид ¹⁵О ($T_{1/2} = 122$ с), относящийся к ультракороткоживущим радионуклидам (УКЖР), $T_{1/2}$ которых составляет ≤ 100 мин, ограничивает круг синтезируемых с ним РФП, позволяя метить им только такие молекулы, как H_2O и CO_2 , и использовать их близко к месту производства. При использовании короткоживущих PH ($T_{1/2}$ которых составляет несколько часов) излучение может испускаться за пределами временных рамок исследования пациента, приводя к нежелательному увеличению лучевой нагрузки на него. При исследовании биологических процессов, лимитированных во времени, $T_{1/2}$ используемого PH должен соответствовать их характерным временам. Так, для обеспечения требуемого накопления в тканях и области интереса меченных PH моноклональных антител (MKAT) и необходимого снижения их уровня в крови в целях получения качественного изображения тр

оказываются востребованными радионуклиды с T_{1/2}, составляющим от нескольких часов до нескольких суток (среднеживущие PH) [8]. Поэтому PH со временем жизни менее часа для таких исследований неприемлемы. Среднеживущие и долгоживущие PH (с T_{1/2} ~ нескольких недель) неудобны с точки зрения их хранения и утилизации.

Удельная активность (A_v), с которой производится позитронный эмиттер, должна составлять достаточную величину, характерную для каждого РН, обеспечивающую при использовании меченного им РФП получение ПЭТ-изображений высокого качества. При низких значениях А_v (когда наряду с позитронным эмиттером в произведенном материале присутствует носитель, например, стабильный изотоп этого же элемента) только малая доля меченных РН молекул в вводимом пациенту РФП является радиоактивной (производящей полезный сигнал при ПЭТ-детектировании), в то время как остальные молекулы в нем такой сигнал не производят. Поскольку проведение РНД подразумевает использование субфармакологических количеств РФП, не вызывающих нарушений биологической системы, то масса вводимого пациенту препарата должна быть как можно меньше, а его удельная активность как можно выше [3].

Радионуклидная чистота (РНЧ) используемого для мечения препарата РН должна соответствовать требованиям национальных регламентирующих документов. Устанавливаемое ограничение связано с тем, что радионуклидные примеси (в т.ч. другие радиоактивные изотопы выбранного элемента), возникающие при производстве РН-метки, попадая с РФП в организм пациента, могут существенно увеличивать лучевую нагрузку на него. Кроме того, если энергия излучений примесей находится в пределах выбранного энергетического окна детекторной системы ПЭТ-сканера, то это может приводить к регистрации завышенной скорости счета и увеличивать «мертвое» время детектора, что приводит к ухудшению качества получаемого ПЭТ-изображения [4].

Химические свойства РН должны быть оптимальными для предназначенного медицинского использования. Радионуклид используется в качестве метки РФП, имеющего в своем составе также молекулярный носитель (коим могут быть органические соединения, пептиды, белки, антитела и их фрагменты, наночастицы, микросферы и др.), химическая структура которого обусловливает тропность (аффинитет) к тому или иному органу или ткани. Предпочтительными для радиомечения являются радионуклиды элементов, позволяющие осуществлять синтез широкого спектра химических соединений, а также легко инкорпорируемые в биомолекулы без значительных изменений свойств последних [3].

Тропность PH к тканям исследуемых органов пациента (преимущественное накопление PH в них) оказывается важным свойством в ряде случаев их использования в ПЭТ [7]. Так, радиоактивный йод обладает тропностью к щитовидной железе, а меченный им препарат гиппурат – к почкам. Однако этот критерий, отражающий особенности распределения PH по органам и тканям, не является первостепенным, поскольку PH может быть включен в состав различных молекул, биологические свойства которых резко отличаются от его собственных свойств и обеспечивают распределение РФП в организме пациента, отличное от собственного распределения PH.

Радиотоксичность – свойство РН вызывать возможные патологические изменения при его введении в организм. Величина радиотоксичности должна быть приемлемой для обеспечения безопасности пациента при ПЭТ-исследовании [4].

2. Параметры ранжирования радионуклидов для применения в ПЭТ

Практические применения РН определяются данными по их радиоактивному распаду, которые, как правило, хорошо известны [5, 9]. При этом маловероятно, что интерес для применения в ПЭТ могут представлять, например, PH с неприемлемым T_{1/2} или PH, у которых выход позитронов и выход у-излучения с энергией 511 кэВ составляет малую долю в общей схеме распада. Поэтому целесообразно рассмотреть на соответствие требованиям к РН только те из них, у которых период полураспада лежит в диапазоне от 1 мин до 10 сут, а выход квантов с энергией 511 кэВ составляет более 5 % [4]. Однако и в таких рамках можно выявить ограничения и преференции использования в ПЭТ позитронных эмиттеров, обладающих уникальными наборами ядерно-физических свойств радиоактивного распада, включающими в себя время участия PH в конкурирующих процессах β⁺-распада и электронного захвата (ЭЗ), среднюю/максимальную энергию эмитируемых позитронов на один акт распада $(E_{\beta+}^{cp}/E_{\beta+}^{makc})$, выход (в %) ү-квантов на распад (I_{ν}), энергию ү-излучения на распад (E_{γ}^{pacn}), в т.ч. аннигиляци-онного ($E_{a\gamma}^{pacn}$) и побочного ($E_{n\gamma}^{pacn}$), а также $T_{1/2}$ PH.

Для применения в ПЭТ наиболее подходят PH, характеризуемые максимальной долей времени участия в β^+ -распаде и обеспечивающие максимальный выход аннигиляционного излучения. Лишь немногочисленные позитронные эмиттеры (¹¹C, ¹³N, ¹⁵O, ³⁸K) обладают единственной линией регистрируемых γ-квантов. Для них величина I_γ с энергией 511 кэВ составляет 200 %. При распаде эти PH переходят в основное со-

стояние дочерних ядер. Для других позитронных эмиттеров доля участия в β+-распаде оказывается меньше (а для ряда РН существенно меньше) из-за их участия в побочных переходах. Так, в перечень РН с долей β+-распада в общей схеме распада, составляющей не менее 97 % (I_v с энергией 511 кэВ не менее 194 %), кроме указанных выше PH входят ¹⁸F, ³⁰P, ^{52m}Mn, ⁶²Cu. PH с минимальным выходом побочного у-излучения, испускаемого вместе с позитронами при β+-распаде, обладают преимуществом для получения ПЭТ-изображений наивысшего качества. Это связано с тем, что такое излучение способно вносить нежелательный вклад в основное регистрируемое излучение с энергией 511 кэВ из-за наложения регистрируемой от них информации, возможность которого нельзя исключать, несмотря на то, что ПЭТ-сканеры позволяют осуществлять дискриминацию по энергии.

Радионуклиды ¹¹С, ¹³N, ¹⁵О, ³⁰Р, ³⁸К характеризуются величиной E_{av}^{расп}, достигающей своего максимального значения 1,02 МэВ. Близким к этому значению энергии обладают β+-излучатели ⁶²Cu и ⁶⁴Ga (1,00 MэB), ¹⁸F, ⁴⁷V, ^{52m}Mn и ⁷⁷Rb (0,99 MэB), ⁷¹Se и ⁸²Rb (0,98 МэВ), ⁴⁴Sc (0,97 МэВ), ⁴⁹Cr, ⁶⁰Cu и ⁶³Zn (0,95 МэВ), ⁶⁷Ge (0,92 МэВ), ⁶⁸Ga (0,91 МэВ), ⁷²As и ⁹²Tc (0,90 МэВ). Указанные РН наиболее подходят для применения в ПЭТ, в то время как PH ⁵²Mn, ⁸³Sr, ^{82m}Rb, ⁸⁶Y оказываются наименее приемлемыми для ПЭТ по параметру E_{av}^{pacn} . Снижение величины E_{av}^{pacn} по сравнению с максимальной (1,02 МэВ) означает, что позитронные эмиттеры испытывают β+-распад менее 100 % времени из-за их участия в побочных переходах. Для большинства РН характерны сложные схемы радиоактивного распада. Так, при распаде ¹²⁴I может происходить заполнение возбужденных состояний ¹²⁴Те. Следствием такого распада ¹²⁴І является возникновение каскада высокоэнергетических фотонов, эмитируемых при девозбуждении ядер ¹²⁴Те. Снижение выхода позитронов за счет участия РН в побочных к β+-распаду переходах приводит к более длительному времени получения ПЭТ-изображения для достижения такой же счетной статистики при неизменной величине вводимой пациенту активности. Это, в свою очередь, обусловливает повышение лучевой нагрузки на него. Наличие в спектре у-излучения РН низкоэнергетических фотонов и корпускулярного излучения (β-частиц, электронов конверсии), имеющих высокую вероятность взаимодействия в теле пациента и практически не покидающих его, не приносит пользы, а приводит лишь к увеличению лучевой нагрузки на пациента и снижает привлекательность этого РН для ПЭТ. Применение РН, эмитирующих при β⁺-распаде побочное γ-излучение, ограничивается и возрастающей лучевой нагрузкой на персонал.

Целый ряд PH может оказаться проблематичным для использования в ПЭТ-исследованиях из-за свойственной им высокой энергии $E_{n\gamma}^{pacn}$. Так, к PH с $E_{n\gamma}^{pacn}$ > 3 МэВ относятся радионуклиды ^{34m}Cl, ⁴⁴Sc, ^{52,52m}Mn, ⁵⁵Co, ⁵⁷Ni, ⁶⁰Cu, ⁶²Cu, ⁶⁴Ga, ⁶⁶Ga, ⁶⁷Ge, ⁷¹Se, ⁷²As, ⁷⁶Br, ⁸²Rb, ⁸⁶Y, ⁹⁰Nb, ⁹³Tc, ^{94m}Tc, ¹⁰⁰Rh, ¹⁰⁴Ag, ^{110m}In, ¹¹⁶Sb, ¹²⁰I, ¹²²I, ¹²⁴I, ¹³⁴La, ¹⁴⁰Pr, ¹⁵²Tb. Высокоэнергетическое γ-излучение из-за его радиотоксичности требует снижения активности вводимого пациенту РФП (что ухудшает качество ПЭТ-изображений), а также требует дополнительных мер по обеспечению радиационной безопасности персонала.

Таким образом, для снижения вклада побочного излучения в регистрируемый сигнал целесообразно выбирать РН с малым выходом и невысокой энергией его квантов.

Еще одним параметром ранжирования РН для получения качественных ПЭТ-изображений является Е_{*β*+^{*ср*}. К радионуклидам, характеризующим-} ся малой энергией позитронов $E_{\beta+}^{cp}$, относятся ⁷⁷Br $(E_{\beta+}^{cp} = 0,15 \text{ МэВ}), {}^{18}\text{F}$ и ${}^{52}\text{Mn}$ (0,24 MэB), ${}^{62}\text{Zn}$ и ${}^{79}\text{Kr}$ (0,26 M3B), ⁶⁴Cu (0,28 M3B), ^{82m}Rb (0,30 M3B), ⁵²Fe (0,34 МэВ), ⁵⁷Ni, ⁷¹As, ⁹³Tc и ¹⁰⁹In (0,35 МэВ), ¹¹С (0,38 M)B), ⁸⁹Zr (0,40 M)B), ⁸¹Rb (0,43 M)B), ⁴⁵Ti (0,44 МэВ), ¹³N (0,49 МэВ), ⁸³Sr (0,5 МэВ). Такие РН позволяют получать ПЭТ-изображения с наивысшим пространственным разрешением. При этом величина Е_{*макс*} указанных РН не превышает 2 МэВ, а средняя длина пробега позитронов в воде, определяемая величиной Е_{в+}ср, составляет менее 2 мм. Последнее свойство является определяющим, например, при функциональном исследовании малоразмерных структур с неоднородным распределением РФП [2, 10]. Для ПЭТ-детектирования патологических очагов малых размеров необходимо выбирать РН, обеспечивающие минимальные потери пространственного разрешения, определяемые лишь неопределенностью расстояния между точками эмиссии позитрона и его аннигиляции с электроном. Чем ниже энергия позитрона, тем меньше средняя длина его пробега до точки аннигиляции и, следовательно, выше пространственное разрешение [1]. И, напротив, такие PH, как ³⁰P, ³⁸K, ⁶⁰Cu, ⁶²Cu, ⁶⁴Ga, ⁶⁶Ga, ⁶⁷Ge, ⁷¹Se, ⁷⁶Br, ⁷⁷Rb, ⁸²Rb, ⁸⁶Y, ⁹²Tc, ¹²⁰I, ¹²²I, ¹²⁸Cs, ¹³⁴La, ¹⁵²Tb, ²⁰¹Pb, оказываются малопригодными для таких исследований из-за их высокоэнергетических позитронов.

Позитронные эмиттеры, Т_{1/2} которых составляет от нескольких часов до нескольких суток, могут рассматриваться в качестве кандидатов для использования в ПЭТ-исследованиях медленно протекающих биологических процессов. К таким PH относятся ⁴³Sc, ⁴⁴Sc, ⁵²Fe, ⁵⁵Co, ⁶¹Cu, ⁶⁴Cu, ⁶²Zn, ⁷³Se, ⁷⁶Br, ⁸¹Rb, ^{82m}Rb, ⁸⁶Y, ⁹⁰Nb, ⁹³Tc, ⁹⁵Ru, ¹⁰⁹In, ¹²³Xe, ¹⁵²Tb, Т_{1/2} которых составляет от 3 до 24 час, а также ⁵²Mn, ⁵⁷Ni, ⁷¹As, ⁷²As, ⁷⁷Br, ⁷⁹Kr, ⁸³Sr, ⁸⁹Zr, ¹²⁴I, Т_{1/2} которых лежит в диапазоне 1-10 сут. И, наоборот такие УКЖР, как ^{82m}Rb, ¹⁵О, ¹³N, ¹¹C, ¹⁸F, ³⁰P, ³⁸K, ^{52m}Mn, ⁶⁸Ga, ⁷⁵Br, ^{94m}Tc, ^{110m}In, ¹²²I не подходят для исследований медленно протекающих процессов. В исследованиях процессов продолжительностью до нескольких суток особенно лимитирующим фактором становится лучевая нагрузка на пациента, требующая выбора РН с оптимальным T_{1/2}. Величина Т_{1/2} накладывает ограничения как на продолжительность синтеза меченых РФП, так и на срок их годности.

3. Позитронные эмиттеры для различных применений. Критерии отбора

ПЭТ-исследования

Основными критериями отбора PH для практических применений в ПЭТ могут быть их доступность, близкие к оптимальным ядерно-физические свойства, а также возможность их включения в молекулы для радиомечения препаратов, безопасность для пациента созданных на их основе РФП и особенности исследуемых биологических процессов.

Наиболее важными критериями селекции РН для рутинных применений в ПЭТ являются их доступность в промышленных объемах и стоимость. Несомненным преимуществом по этим критериям обладают ⁶⁸Ga и ⁸²Rb, получаемые наиболее доступным и относительно дешевым генераторным методом [11, 12]. Поскольку их применение в ПЭТ-диагностике достаточно ограничено, то для производства других актуальных РН часто используется более дорогостоящий циклотронный метод [13-17], требующий для своей реализации специальных ресурсов (технических, финансовых, кадровых, радиационно-защитных). Среди циклотронных РН наиболее привлекательными по этому критерию являются ¹⁸F, ¹¹C, ¹³N, ¹⁵O, не требующие применения высокоэнергетических ускорителей и дорогостоящих мишеней, и для которых хорошо отработаны технологии их производства.

Лишь ограниченное число позитронных излучателей обладает требуемыми химическими свойствами для синтеза меченных ими РФП для ПЭТ. Предпочтением пользуются РН тех элементов, с которыми можно легко производить как предшественники (химические формы, реагирующие с образованием широкого ряда меченых продуктов), так и РФП [18]. Важным критерием также является прочность удержания РН-метки в составе РФП, поскольку в случае ее освобождения диагностический эффект может не достигаться. Указанным критериям наиболее удовлетворяют такие РН, как ¹⁸F, ¹¹C, ¹²⁴I. Включение в биомолекулы может быть проблематичным при использовании в качестве меток радиометаллов ⁴⁴Sc, ⁶⁸Ga, ⁸⁹Zr, ^{94m}Tc, ⁸⁶Y, обладающих выгодными ядерно-физическими свойствами. В этом случае разрабатываются методы (в частности, хелатирования) для защиты металлических РН-меток от биологически активных центров молекул.

На сегодняшний день совокупностью ядерно-физических свойств, близких к оптимальным свойствам для эффективного применения в ПЭТ-диагностике, обладает лишь небольшое число позитронных излучателей [5, 13, 19]. К ним относятся ставшие сегодня уже традиционными ¹⁸F, ¹¹C, ¹⁵O, ¹³N, а также ⁶⁸Ga, наиболее полно удовлетворяющие требованиям к ПЭТ-радионуклидам. На их долю приходится подавляющее число проводимых в мире ПЭТ-исследований, с оговоркой, что ¹⁵O и ¹³N находят лишь ограниченное применение в ПЭТ по сравнению с ¹⁸F, тогда как ранжирование других позитронных эмиттеров в этом ряду остается предметом для дальнейших исследований. Оптимальными для мечения РФП являются РН, позволяющие получать достоверную информацию о заболевании при минимальной лучевой нагрузке на больного. Наибольшую безопасность для пациента представляют РН, не эмитирующие при их радиоактивном распаде фотоны и позитроны высокой энергии. К ним, в первую очередь, относятся ¹¹C, ¹³N, ¹⁵O, ¹⁸F, ⁴⁵Ti, ⁶⁴Cu, ⁷⁷Br, ⁷⁹Kr, ⁸¹Rb, ⁸⁹Zr [5]. При большой энергии эмитируемого РН излучения (например, ²²Na) степень радиопоражаемости оказывается выше.

Наибольший интерес для исследований быстропротекающих биологических или биохимических процессов *in vivo* представляют PH физиологически важных элементов, которые естественным образом присутствуют во многих биомолекулах, такие, как ¹¹C, ¹³N, ¹⁵O [13, 20]. Эти биогенные PH не изменяют химические свойства препаратов в отличие, например, от используемых в ОФЭКТ радионуклидов ^{99m}Tc или ¹²³I. Кроме того, они обладают выгодными ядерно-физическими и химическими свойствами:

- коротким T_{1/2} (2–20 мин) и способностью распадаться до нерадиоактивных продуктов, что позволяет использовать меченные ими РФП с высокой активностью в исследованиях (в т.ч. многократных) при малых лучевых нагрузках на пациента;
- относительно невысокой энергией эмитируемых позитронов (менее 2 МэВ), обеспечивающей минимальную потерю пространственного разрешения ПЭТ-сканера;
- ничтожно малой побочной эмиссией ү-квантов, способных давать вклад в случайные совпадения и ухудшать качество получаемых ПЭТ-изображений;
- возможностью включения в биомолекулы для изучения метаболических процессов организма человека и внедрения в биологически активные вещества для адекватного отражения происходящих в организме процессов.

Изотоп фтора ¹⁸F не относится к физиологически важным элементам, но его можно использовать для замещения в молекулах атома жизненно важного элемента ¹Н, не имеющего радиоактивного изотопа с излучением, детектирование которого было бы возможно вне тела пациента. Важно, что такое замещение в большинстве случаев существенно не изменяет биологическое поведение молекул. Этот РН находит самое широкое применение, с ним проводится ~ 90 % всех ПЭТ-исследований (метаболизма, экспрессии рецепторов эстрогена, пролиферации, гипоксии и др.). Он обладает наиболее подходящими для ПЭТ ядерно-физическими свойствами [5, 21]: близким к оптимальному $T_{1/2}$ (110 мин), минимальной $E_{\beta+p}$ (0,24 МэВ), преимущественным участием в β⁺-распаде (97 %). Этот РН можно вводить в качестве метки во многие важные органические молекулы, такие, как 2-фтор-2-дезокси-D-глюкоза. Достаточно большой T_{1/2} ¹⁸F позволяет доставлять меченные им РФП к месту применения из других мест их производства.

Радионуклид ⁶⁸Ga, характеризующийся высокими выходами позитронов (89 %, $E_{\beta+} = 1900$ кэВ) и у-квантов с энергией 511 кэВ (177 %) обладает по сравнению с ¹⁸F оптимальным Т_{1/2} – более коротким (68 мин) и снижающим лучевую нагрузку, но достаточным для проведения химических манипуляций при синтезе большого числа РФП. Радионуклид ⁶⁸Ga является идеальным радиотрейсером [22, 23], благодаря его химическим свойствам, способности формировать устойчивые комплексные соединения со многими лигандами и, в частности, метить биомолекулы с использованием макроциклических хелаторов. Так, меченные им пептиды и простатический специфический мембранный антиген (PSMA) успешно используются в ПЭТ-исследованиях нейроэндокринных опухолей (НЭО) и рака простаты соответственно. Производство ⁶⁸Ga возможно с применением радионуклидного генератора ⁶⁸Ge/⁶⁸Ga в течение длительного срока.

Для ПЭТ-исследований динамических процессов (прежде всего, в ядерной кардиологии) наибольшим потенциалом обладает радионуклид ⁸²Rb, благодаря его сходству с физиологическим одновалентным катионом калия, который транспортируется через клеточную мембрану [24]. Он частично экстрагируется миокардом за время одного капиллярного прохода. Период полураспада ⁸²Rb (1,3 мин), получаемого на радионуклидном генераторе ⁸²Sr/⁸²Rb, позволяет проводить ПЭТ-исследования каждые 10 мин.

Для исследований патологических процессов с медленной фармакокинетикой, требующих длительного времени накопления РФП в очаге поражения, используются РН-метки с большим T_{1/2} [24–27]. Так, ⁶⁴Cu, ⁸⁹Zr и ¹²⁴I применяются для исследований продолжительных биологических процессов с участием больших биомолекул (например, антител и их фрагментов). РФП на их основе используются для ПЭТ-визуализации и планирования радионуклидной терапии злокачественных новообразований (3HO).

Радионуклид ⁶⁴Си необычен тем, что может распадаться по трем механизмам: β^+ , β^- и ЭЗ. Эта особенность позволяет его производить как реакторным, так и циклотронным методом по (n, γ)- и (p,n)-реакциям соответственно. Хорошо изученная координационная химия ⁶⁴Си позволяет использовать его для проведения реакций с целым рядом хелатных систем, обеспечивающих возможность мечения антител, протеинов, пептидов и других биологически значимых малых молекул. Этот PH обладает подходящим $T_{1/2}$ (12,7 ч). Он может использоваться как для диагностики (визуализации гипоксии), так и для терапии, а также в качестве ПЭТ-индикатора для исследования собственного метаболизма.

Радионуклид ¹²⁴I, благодаря своему периоду полураспада (99,6 ч), хорошо подходит для *in vivo* исследований медленно протекающих процессов накопления меченных им МКАТ в солидных опухолях. Его производство хорошо отработано. Однако он не является идеальным ПЭТ-радионуклидом вследствие того, что обладает малой составляющей позитронного излучения (22 %), высокой $E_{\beta+}^{макc}$ (2,13 МэВ) и высокой долей побочного γ-излучения (78 %). Кроме того, он характеризуется повышенной радиотоксичностью и обусловливает высокую лучевую нагрузку на пациента.

В последнее время резко растет внимание к радионуклиду ⁸⁹Zr, являющемуся идеальной меткой для ПЭТ-визуализации МКАТ, обладая для этого более подходящим по сравнению с ¹²⁴I периодом полураспада (78,4 ч). Этот РН вследствие своих привлекательных свойств обладает большим потенциалом для широкого медицинского применения в иммуно-ПЭТ, дозиметрии in vivo, планировании радионуклидной терапии (PHT). Так, при его распаде до стабильного ⁸⁹Y испускается ү-излучение лишь одной энергии (909 кэВ). Эмитируемые им позитроны обладают невысокой энергией (E_{B+}^{cp} = 395 кэВ, E_{B+}^{Makc} = 900 кэВ), обусловливающей малую длину их пробега в биоткани и, как следствие, высокое пространственное разрешение получаемых ПЭТ-изображений. Этот РН легкодоступен для получения на циклотроне с использованием протонов невысокой энергии и недорогого мишенного материала. В табл. 1 приведены ядерно-физические свойства наиболее важных ПЭТ-радионуклидов [3, 28-31].

Таблица 1

Ядерно-физические свойства основных ПЭТ-радионуклидов

PH	Т _{1/2} , ч	Тип распада (%)	Е _{β+} макс, МэВ	Е _ү ^{расп} , кэВ (І _ү , %)
¹¹ C	0,34	$\beta^{+}(100)$	0,96	511 (200)
¹³ N	0,17	$\beta^{+}(100)$	1,19	511 (200)
15O	0,03	β+ (100)	1,72	511 (200)
¹⁸ F	1,83	$\beta^{+}(97)$	0,64	511 (194)
		93 (3)		
⁶⁴ Cu	12,70	β+ (17)	0,65	511 (35)
		β-(39)	0,58	
		J 3 (44)	-	1346 (0,48)
⁶⁸ Ga	1,13	β+ (88)	1,90	511 (176)
		ЭЗ (12)		1077 (3,3)
⁸² Rb	0,02	β+ (96)	2,60; 3,38	511 (192)
		· 33 (4)		777 (15,1)
⁸⁹ Zr	78,40	β+ (23)	0,90	511 (46)
				909 (99)
¹²⁴ I	99,60	β+ (22)	1,50; 2,13	511 (45)
		Э З (78)		603(61), 723(10), 1691(10)

Совместные ПЭТ- и ОФЭКТ-исследования

В табл. 2 приведен перечень и ядерно-физические свойства РН двойного назначения, т.е. применяемых как в качестве позитронных эмиттеров в ПЭТ-диагностике, так и в качестве ү-излучателей в исследованиях методом ОФЭКТ [9, 19, 32, 33]. Энергия ү-излучения (сопутствующего позитронному излучению) РН, приведенных в табл. 2, позволяет их использовать и в ОФЭКТ. У некоторых из них, например, ⁵²Fe, она не выходит за рамки приемлемого для ОФЭКТ диапазона (80–500 кэВ). Другие РН (⁶²Zn, ⁸¹Rb и ¹²²I) при распаде эмитируют излучение с близкой к этому диапазону энергией (менее 600 кэВ).

В последнее время на практике все чаще обращаются к комбинированию позитронных эмиттеров и γ-эмиттеров – разных радиоизотопов одного и того же элемента – в целях повышения эффективности их применения в совместных с ПЭТ диагностических исТаблица 2

Перечень и ядерно-физические свойства позитронных эмиттеров для ПЭТ и ОФЭКТ

PH	Т _{1/2} , ч	Тип распада (%)	Е _{<i>макс</i>, МэВ}	Е _ү , кэВ
⁵² Fe	8,73	β+(56)	4,48	511
				169
62Cu	0,16	β+ (97)	2,94	511
⁶⁴ Си (табл. 1)		ЭЗ (3)		1172
⁶² Zn	9,26	$\beta^{+}(16)$	0,60	511
				508, 548, 597
66Ga	9,49	β+(57)	4,15	511
				833, 1039, 2189, 2751
⁷² As	26,4	$\beta^{+}(88)$	2,50; 3,33	511
				630, 834
⁸⁶ Y	14,74	$\beta^{+}(34)$	1,22; 1,55; 1,99	511
		93 (66)		0,44-1,92
^{94m} Tc	0,87	$\beta^{+}(72)$	2,47	511
				871
¹²² I	0,06	β+ (77)	3,12	511
		<u> </u>		560

следованиях методом ОФЭКТ, в частности, таких, как $^{94m}Tc/^{99m}Tc$ и $^{68}Ga/^{67}Ga.$

Тераностика

ПЭТ сегодня является наилучшим методом в плане отбора пациентов для проведения РНТ и ее контроля, в т.ч., с использованием количественных измерений. Для комбинации ПЭТ-визуализации и РНТ продолжают разрабатываться, наряду с уже применяемыми на практике PH 67Cu/64Cu, 90Y/86Y и 131I/124I, новые лечебно-диагностические радионуклидные пары [34-36]. К ним относятся как изотопы одного элемента, например, тербия (¹⁴⁹Tb/¹⁶¹Tb/¹⁵²Tb), скандия ⁴⁷Sc/^{43,44}Sc и мышьяка (^{76,77}As/^{71,72,74}As), так и изотопы разных элементов, в частности, ¹⁷⁷Lu и ⁴⁴Sc. Меченные ими РФП, характеризуясь схожей фармакокинетикой в организме, обладают большим потенциалом для развития тераностики, решающей задачи диагностики и лечения с использованием РФП, являющихся одновременно терапевтическими агентами и средством ранней диагностики. В отличие от РНД и РНТ, в тераностике используется комбинация излучений: терапевтического (α-частицы, β--частицы или Оже-электроны) и диагностического (у-фотоны или позитроны). Это направление медицины возникло после разработки молекулярных векторов направленной доставки лекарственных средств, меченных РН.

Наиболее подходящими и успешно применяемыми сегодня в тераностике являются молекулы пептидов. Будучи соединенными с бифункциональными хелаторами, такими, как DOTA (тетрауксусная кислота) или DTPA (диэтилентриаминпентауксусная кислота), эти соединения могут быть помечены трехвалентными PH для применения как в терапии (90 Y, 153 Sm, 177 Lu, 213 Bi, 225 Ac), так и в ПЭТ-диагностике (68 Ga, 44 Sc, 86 Y, 110m In). Подходящие для исследуемых процессов периоды полураспада, например, 68 Ga, 110m In, 44 Sc, составляющие 1,13 ч, 1,15 ч и 3,97 ч соответственно, гарантируют качественную ПЭТ-визуализацию распределения диагностического РФП в теле больного в течение нескольких часов (68 Ga) и даже одних суток (44 Sc) после введения ему препарата.

Наиболее подходящей для тераностики является пара, у которой диагностический РН представляет собой другой изотоп элемента терапевтического РН (например, ⁸⁶Y/⁹⁰Y), поскольку в этом случае можно использовать одинаковые способы производства и очистки меченных ими РФП. Но для диагностики можно использовать и РН элемента, отличного от элемента терапевтического РН, однако с тем условием, что разномеченые препараты должны обладать схожей фармакологией. Для целей тераностики применяются радионуклидные пары, состоящие из терапевтических PH таких, как ⁹⁰Y, ¹⁵³Sm, ¹⁷⁷Lu и диагностических ПЭТ-радионуклидов, в частности, ⁶⁸Ga, ^{43,44}Sc, ^{110m}In. В табл. 3 представлен перечень пар РН – терапевтических (PH_{тер}) и диагностических (PH_{лиагн}), применяемых в тераностике [34-36].

Специальные применения

Большое значение для развития совмещенной ПЭТ/МРТ-диагностики имеют предназначенные для нее двухмодальные агенты. Так, лекарственный препарат SPION, являясь МРТ-активным агентом, при его мечении, например, позитронным эмиттером ⁷²As может успешно использоваться в совместных ПЭТ/МРТисследованиях [37]. Разрабатываются интеллектуальные контрастные агенты, например, путем химического связывания МРТ-контрастного агента гадолиния с медью. Кроме того, сами позитронные эмиттеры (например, ^{51,52}Mn) могут применяться в качестве контрастных агентов [38].

Вызывают немалый интерес проводимые в последнее время исследования в направлении комбинирования радиоактивности и нанотехнологии. Так, расширяется число разработок по созданию таргетных РФП для онкологии на наночастичной и биомолекулярной основе (нанотранспортеров) [39]. К наноструктурам на основе золота, двуокиси кремния и других материалов присоединяются молекулы лекарств (в частности, пептидные биорегуляторы), а также РН для их мечения такие, как ⁷²As, ⁶⁴Cu, ⁸⁹Zr. Интерес к наночастицам вызван их способностью накапливаться в ЗНО и воздействовать эмитируемым радионуклидами излучением на клеточные структуры патологического очага.

Таблица 3

PH _{rep}	Т _{1/2} , сут	РН _{диагн}	Т _{1/2} , ч	β+-рас- пад, %	Метод получения	
Изотопные заменители						
¹³¹ I	8,04	¹²⁴ I	100,32	23	Циклотронный	
		¹²² I	0,06	77	Циклотр. / гене- рат. ¹²² Хе/ ¹²² І	
⁶⁷ Cu	2,58	⁶² Cu	0,16	98	Циклотр. / гене- рат. ⁶² Zn/ ⁶² Cu	
⁹⁰ Y	2,67	⁸⁶ Y	14,74	33	Циклотронный	
⁴⁷ Sc	3,34	⁴³ Sc ⁴⁴ Sc	3,89	88	Циклотронный	
Неизотопные заменители						
90Y	2,67	⁶⁸ Ga	1,13	88	Циклотр. / гене- рат. ⁶⁸ Ge/ ⁶⁸ Ga	
¹⁵³ Sm	1,95	⁴⁴ Sc	3,97	94	Циклотр. / гене- рат. ⁴⁴ Ti/ ⁴⁴ Sc	
¹⁷⁷ Lu	6,71	^{110m} In	1,15	62	Циклотр. / гене- pat. ^{110m} Sn/ ^{110m} In	

Радионуклидные пары для тераностики

4. Доступность позитронных эмиттеров

Развитие ПЭТ связано с разработкой новых РФП, определяемой доступностью PH-меток, не существующих в природе в свободном виде. Чаще всего они производятся бомбардировкой стабильных ядер материала мишени высокоэнергетическими частицами, ускоренными на циклотроне, а также генераторным способом. При этом ядерный реактор крайне редко используется для производства позитронных PH.

4.1. Циклотронное производство ПЭТ-радионуклидов

Циклотроны являются основными источниками получения РН для ПЭТ. На них возможно осуществить наработку позитронных эмиттеров при инициировании ядерных реакций в мишени, облучаемой ускоренными заряженными частицами (протонами (р), дейтронами (d) или альфа-частицами (а)): ¹¹С (p/d), ¹³N(p/d), ¹⁵О (p/d), ¹⁸F(p/d), ³⁸K $(p/d/\alpha)$, ⁴⁴Sc(p), ⁵²Mn(p), ⁵²Fe(p), ⁶²Cu(p), ⁶⁴Cu(p/d), ⁶²Zn(p), ⁶⁸Ga(p), ⁷⁵Br(p), ⁷⁶Br(p), ⁸¹Rb(p/α), ⁸⁶Y(p), ⁸⁹Zr(p), ^{94m}Tc(p), ^{110m}In(p), ¹²⁴I(p/d) и др. При этом используются циклический ускоритель заряженных частиц, мишень высокого тока с мишенным материалом, в т.ч. из высокообогащенного изотопа, дистанционная автоматизированная система управления и специальная радиационная защита [4, 15-17, 40]. Для выделения целевого РН из облученного материала применяются методы дистилляции (124I - при 750 °C), термохроматографии (^{94m}Tc – при 1090 °C), ион-обменной хроматографии (⁶⁴Cu), а также метод извлечения PH растворением мишени [17].

Активность нарабатываемого на циклотроне PH возрастает с течением времени облучения мишени. Величина активности к концу времени облучения зависит от его продолжительности, количества облучаемого материала мишени, тока бомбардирующих ее заряженных частиц и поперечного сечения ядерной реакции, определяемого энергией этих частиц. PHЧ, определяемая отношением активности целевого PH к общей активности облученного мишенного материала, зависит от его химического и изотопного состава, а также от типа и тока частиц пучка, облучающего мишень, их энергии и времени облучения [4]. С целью минимизации примесей в продукте используется мишенный материал высокой чистоты, а также применяются методики химического разделения для его очистки.

Возможность инициирования того или иного типа ядерных реакций существенным образом зависит от энергии частиц, бомбардирующих мишень. Так, для каждой частицы и типа мишенного материала существует свой энергетический порог, ниже которого целевой РН не нарабатывается. В табл. 4 приведены данные из разных литературных источников, в которых используется условная классификация циклотронов по четырем уровням [41] и где показано влияние энергии протонов (E_n) на тип инициируемых реакций и спектр нарабатываемых на них позитронных эмиттеров. Для производства одних из них, например, ¹¹C, ¹³N, ¹⁵O, ¹⁸F, достаточно использовать циклотроны с $E_n \leq 20$ МэВ, а для других, в частности, ⁵²Fe и ⁷²As, требуются ускорители с энергией частиц 50–100 МэВ.

Таблица 4 Позитронные РН, нарабатываемые на циклотронах с протонным пучком

Уровень Е _п , Ядерные Производимые циклотрона МэВ реакции позитронные РН	
циклотрона МэВ реакции позитронные РН	
I ≤ 10 (p,n), (p,a) ^{11}C , ^{13}N , ^{15}O , ^{18}F	
II ≤ 20 (p,n), (p,a) ^{11}C , ^{13}N , ^{15}O , ^{18}F , ^{34m}Cl , 4	^{3,44} Sc,
⁴⁵ Ti, ⁵² Mn, ⁵² mMn, ⁵⁵ Co,	⁶⁰ Cu,
⁶¹ Cu, ⁶³ Zn, ⁶⁴ Cu, ⁶⁶ Ga, ⁶⁸	Ga,
⁷² As, ^{76,77} Br, ⁷⁹ Kr, ⁸⁶ Y, ⁸⁹ Z	Źr,
⁹⁰ Nb, ⁹² Tc, ^{94m} Tc, ^{110m} In,	¹¹⁸ Sb,
¹²⁰ І, ¹²⁴ І и др.	
III ≤ 45 (p,pn), ²² Na, ³⁰ P, ³⁸ K, ⁴⁹ Cr, ⁵⁵ Co,	⁵⁷ Ni,
$(p,2n), {}^{62}Cu, {}^{62}Zn, {}^{71,73}Se, {}^{75,77}Br$; ⁷⁷ Kr,
(p,3n) и др. ⁷⁹ Kr, ^{81,82} Rb, ⁸⁷ Y, ^{94m} Tc, ¹²	³ Xe
и др.	
IV ≤ 200 (p,4n), ²² Na, ⁵² Fe, ⁷² As, ⁷⁷ Kr, ⁸¹ R	b,
(p,5n) и др. ⁸² Sr, ¹²⁰ I, ¹²² I, ¹²³ Xe, ¹²⁸ C	ѕидр.

Традиционные радионуклиды

Производимые в настоящее время на циклотроне РН для ПЭТ находятся на разных уровнях их практического применения. Наиболее отработанным в настоящее время является производство широко используемых в ПЭТ радионуклидов ¹⁸F, ¹¹C, ¹³N, ¹⁵O [15]. Сечения ядерных реакций для их производства очень сильно зависят от энергии бомбардирующих мишень частиц. Поэтому для достижения максимального выхода продукта актуален вопрос выбора их энергии. В табл. 5 представлена информация о ядерных реакциях, используемых для производства традиционных РН для ПЭТ, а также данные об обогащении используемого при этом мишенного материала, энергии протонного пучка и выходах продуктов реакций [16]. Для циклотронной наработки таких PH с требуемыми активностями по (p,n)- и (р,а)-реакциям могут применяться протонные пучки с Е, до 20 МэВ, мишени, эксплуатируемые при токах пучка протонов (I_п) до 300 мкА, а также одновременное облучение двух мишеней.

Получение наиболее часто применяемого в ПЭТ радионуклида ¹⁸F в виде ¹⁸F-F-, используемого для нуклеофильного мечения препаратов, осуществляется в ядерных реакциях ¹⁸O(p,n)¹⁸F или ²⁰Ne(d,a)¹⁸F. Для инициирования наиболее часто применяемой первой реакции используют протоны с энергией 11–18 МэВ, обогащенная по изотопу ¹⁸O вода со степенью обогащения 85–99 % и мишень высокого давления с объемом

Таблица 5

Параметры циклотронного производства основных ПЭТ-радионуклидов

PH	Т _{1/2} , мин	Ядерная реакция	Обогащение мишенного материала, %	Е _п , МэВ	Выход продукта, мКи /мкА
¹¹ C		$^{14}N(p,\alpha)^{11}C$	99,6	12	100
	20,4	$^{11}B(p,n)^{11}C$	80,3	8-20	40
		¹⁰ B(d,n) ¹¹ C	19,7	7	10
¹³ N		¹² C(d,n) ¹³ N	98,9	2-6	50
	10,0	¹³ C(p,n) ¹³ N	1,1	5-10	115
		$^{16}O(p,a)^{13}N$	99,8	8-18	65
15O		¹⁴ N(d,n) ¹⁵ O	99,6	6-8	27
	2,0	¹⁵ N(p,n) ¹⁵ O	0,36	10-15	47
		¹⁶ O(p,pn) ¹⁵ O	99,8	> 26	25
¹⁸ F	109,8	20 Ne(d,a)^{18}F	0,2	8-17	180
		¹⁸ O(p,n) ¹⁸ F	90,5		82

0,1–4 мл. Конструкции мишеней различаются для разных типов циклотронов и энергий протонов и могут влиять на выход продукта. При облучении в течение 2 ч обогащенной по изотопу ¹⁸О воды (со степенью обогащения 98 %) на двух мишенях протонным пучком с $E_n = 18$ МэВ и $I_n = 150$ мкА активность производимого продукта в мишени большого объема может достигать 590 ГБк. При инициировании реакции ¹⁸О(р,n)¹⁸F протонами с энергией 11 МэВ и 18 МэВ продукт ¹⁸F-F⁻ получают с A_y , составляющей 370 ГБк/мкмоль [2] и 11–5100 ГБк/мкмоль [4] (в зависимости от содержания носителя ¹⁹F₂ в мишени) соответственно. Величина A_y может снижаться из-за высокой химической активности ¹⁸F при его взаимодействии с материалом тела мишени и образованием носителя ¹⁹F₂ [31].

Радионуклид ¹⁸F в виде газа ¹⁸F-F₂, используемого для электрофильного мечения препаратов, чаще получают при облучении протонами газообразного мишенного материала ¹⁸O-O₂. В результате последующего охлаждения облученного ¹⁸O-O₂ при температуре жидкого азота наработанный ¹⁸F-фтор остается в адсорбированном состоянии на стенках мишени и затем собирается при ее промывке смесью газов из нерадиоактивного ¹⁹F₂ (1%) в качестве носителя и Kr (либо Ne). Нарабатываемая мольная активность продукта ¹⁸F-F₂ (37–370 МБк/мкмоль) зависит от количества примесного газа-носителя ¹⁹F₂ [4].

Для получения радионуклида ¹¹С чаще всего используется реакция ¹⁴N(p,a)¹¹C, инициируемая пучком протонов с энергией, как правило, не менее 10-12 МэВ. В качестве газового мишенного материала применяется чистый азот N_2 (с природным содержанием ¹⁴N, равным 99,6 %) с малой примесью кислорода (0,5-1 %). Образующийся в этой реакции углерод (11C) стабилизируется в виде ¹¹С-СО и ¹¹С-СО₂. Газ ¹¹С-СО₂ вымораживается в охлаждаемой жидким азотом ловушке, из которой затем собирается путем ее нагрева либо промывки гелием. Мольная активность ¹¹С, получаемого из природного N₂ в реакции ¹⁴N(p,a)¹¹C, резко возрастает при использовании N2 высокой чистоты вместо смеси N₂ с O₂. Однако и в этом случае не удается получать соединения, меченные ¹¹С, разбавленные ¹²С менее, чем в 2 тыс. раз, т.е. с мольной активностью, не превышающей 740 ГБк/мкмоль [19]. При ${\rm E_n} \sim 18$ М
эВ активность нарабатываемого за 30 мин продукта составляет 110 ГБк, а его РНЧ = 99,9 %. При его восстановлении образуется предшественник метан, используемый для радиомечения препаратов. При добавлении в мишенный материал вместо кислорода 5 % H₂ производится ¹¹CH₄ с активностью 37 ГБк.

Радионуклид ¹³N может производиться при облучении дейтронами с энергией 6–7 МэВ мишенного материала Al₄C₃ или метана по реакции ¹²C(d,n)¹³N или протонами по реакции ¹³C(p,n)¹³N. Однако чаще всего для производства ¹³N используется чистая вода H₂O (с природным содержанием кислорода ¹⁶O, равным 99,8 %), помещаемая в титановую мишень и бомбардируемая протонным пучком с энергией 8–18 МэВ. В этом случае инициируется ядерная реакция ¹⁶O(p,a)¹³N с образованием ¹³N в составе ионов нитратов и нитритов, используемых далее для получения ¹³N-аммония. При

добавлении в мишенный материал реагентов (спиртов, водорода или метана) и проведении реакции восстановления возможно прямое получение продукта в виде ¹³N-NH₃ с активностью до 15 ГБк при облучении протонами с $E_{\rm m} \sim 18$ МэВ в течение 15 мин.

Производство радионуклида ¹⁵О осуществляют в основном по реакциям ¹⁴N(d,n)¹⁵O и ¹⁵N(p,n)¹⁵O при облучении дейтронами с энергией 8–10 МэВ и протонами с энергией 10–12 МэВ мишенного материала из чистого природного азота и азота, обогащенного по ¹⁵N соответственно. Нарабатываемый продукт стабилизируется в формах ¹⁵O-O₂ (при прямом получении), ¹⁵O-CO₂ и ¹⁵O-CO (при пропускании ¹⁵O-O₂ через активированный уголь, нагретый до температуры 1000 °C), а также в виде ¹⁵O-H₂O. Для производства ¹⁵O в виде газа ¹⁵O-O₂ может использоваться смесь газов азота ¹⁴N, обогащенного по ¹⁵N, и кислорода (2,5 %). При облучении мишени протонами в течение 10 мин и последующем нагреве образующегося ¹⁵O с H₂ выход продукта в виде ¹⁵O-H₂O составляет ~ 40 ГБк.

Экспериментальные радионуклиды

Целый ряд циклотронных позитронных эмиттеров сегодня находится в стадии разработки в качестве экспериментальных PH для ПЭТ (¹²⁴I, ⁸⁹Zr, ⁶⁴Cu, ⁸⁶Y, ^{43,44}Sc, ⁶⁸Ga и др.). Для них получены фундаментальные данные, в частности, измерены поперечные сечения ядерных реакций, показана возможность реализации производственной технологии, установлен выход и PHЧ продукта, продемонстрированы различные применения [14, 42, 59].

В настоящее время производство ¹²⁴I (в т.ч. коммерческое) является одним из наиболее освоенных радионуклидных производств. Оно осуществляется на циклотронах с энергией протонов 10–18 МэВ по реакции ¹²⁴Te(p,n) ¹²⁴I при использовании обогащенной по ¹²⁴Te мишени (в форме оксида). Выход ¹²⁴I при облучении мишени TeO₂, обогащенной по ¹²⁴Te, протонами с $E_n < 20$ МэВ составляет 21 МБк/мкА·ч [27, 43].

Для производства другого радионуклида ⁸⁹Zr достаточно использовать медицинский циклотрон и мишень в виде фольги из природного ⁸⁹Y (0,1 мм). Этот РН получают по реакции ⁸⁹Y(p,n)⁸⁹Zr со средним выходом 49 МБк/мкА·ч [42] и РНЧ более 99,99 % [44, 45]. При этом мишенный материал не требует обогащения и регенерации после облучения.

Радионуклид ⁶⁴Си может быть получен по ядерной реакции ⁶⁴Ni(p,n)⁶⁴Cu [46] при облучении обогащенного ⁶⁴Ni протонами с энергией 9–12 МэВ. Конечный продукт нарабатывается с высоким средним выходом 304 МБк/мкА·ч [42].

Относительно невысокая энергия протонов (9– 14 МэВ) требуется и для производства ⁸⁶Y. Его получают облучением мишенного материала ⁸⁶SrCO₃ на подложке из Al по реакции ⁸⁶Sr(p,n) ⁸⁶Y. При облучении обогащенного мишенного материала протонами с $E_n = 13$ МэВ выход ⁸⁶Y может достигать более 14 МБк/мкА·ч [42].

Радионуклид ⁴⁴Sc может также быть получен на медицинском циклотроне по реакции ⁴⁴Ca(p,n)⁴⁴Sc с использованием в качестве мишенного материала высокообогащенного порошка ⁴⁴CaCO₃. Максимум поперечного сечения этой реакции достигается

при $E_n = 11$ МэВ, а РНЧ составляет более 99 % при $E_n = 9$ МэВ. Продукт с активностью 1,9 ГБк получают при облучении 10 мг порошка с обогащением 97 % в течение 90 мин при $I_n = 50$ мкА [42].

Перспективной является установленная возможность прямого получения на циклотроне радионуклида ⁶⁸Ga высокой чистоты по реакции ⁶⁸Zn(p,n)⁶⁸Ga. Такая возможность продемонстрирована в процессе облучения раствора нитрата высокообогащенного ⁶⁸Zn в азотной кислоте протонным пучком с E_п = 14 МэВ [47]. Радионуклид ⁴³Sc может быть получен на циклотроне с протонным или дейтронным пучком по реакциям ${}^{43}Ca(p,n){}^{43}Sc$ и ${}^{42}Ca(d,n){}^{43}Sc$ соответственно, однако стоимость используемых при этом обогащенных кальциевых мишеней достаточно высока. Значимая для медицинских применений активность ⁴³Sc может быть произведена при облучении природного СаСО3 α-излучением по реакции ^{прир}Са(α,р)⁴³Sc [48]. Радионуклид ⁷³Se получают при облучении мишени ⁷⁵As протонами с $E_n \ge 40$ МэВ по реакции ⁷⁵As(p,3n) [49].

Ряд PH может быть получен как циклотронным методом, так и генераторным методом. К таким PH относятся 44 Sc, 52m Mn, 68 Ga, 77 Br, 82 Rb, 110m In, 122 I.

4.2. Генераторное производство ПЭТ-радионуклидов

Радионуклидные генераторы играют заметную роль в производстве РН для ПЭТ: ⁴⁴Sc, ⁶²Cu, ^{52m}Mn, ⁶⁸Ga, ⁷²As, ⁷⁷Br, ⁸²Rb, ^{110m}In, ¹¹⁸Sb, ¹²²I, ¹²⁸Cs, ¹³⁴La, ¹⁴⁰Pr. Хотя известно немало радионуклидных пар, квалифицированных в качестве генераторных систем, сегодня лишь немногие из них применяются в рутинной медицинской практике (⁶⁸Ge/⁶⁸Ga и ⁸²Sr/⁸²Rb). Ряд других пар, например, ¹⁴⁰Nd/¹⁴⁰Pr, ¹²⁸Ba/¹²⁸Cs, ⁵²Fe/^{52m}Mn, ¹³⁴Ce/¹³⁴La, чаще применяются в генераторах, предназначенных для проведения научных ПЭТ-исследований [50]. Степень практического применения генераторных РН определяется двумя наиболее важными факторами - их доступностью и стоимостью. Ключевыми особенностями генераторов являются их существенно меньшая по сравнению с циклотроном стоимость, удобство получения целевого РН вдали от места наработки материнского РН, а также доступность конечного продукта с высокой удельной активностью и без носителя.

В генераторе материнский PH с периодом полураспада Т_{½,М} распадается, образуя дочерний PH с периодом полураспада Т_{½,д}, активность которого увеличивается с течением времени. Возможно проведение многократных выделений дочернего PH, поскольку после каждого выделения активность дочернего PH вновь нарастает. С этой целью используются такие способы, как сублимация, термохроматографическое выделение, жидкостная, твердофазная экстракция и адсорбционная хроматография на колонках, осаждение при добавлении реагента, электроосаждение [50]. Процесс выделения должен быть быстрым, легко управляемым, обеспечивать получение дочернего PH с приемлемым выходом, чистотой и в химической форме, требуемой для радиомечения широкого класса молекул.

Одним из серийно выпускаемых является генератор ⁶⁸Ge/⁶⁸Ga [11, 36, 50]. Он используется для получения ⁶⁸Ga, спектр применений которого стремительно рас-

ширяется как для ПЭТ-диагностики, так и для планирования РНТ (в концепции тераностики). В нем чаще всего используется сорбент из двуокиси титана, модифицированной 4-8 % двуокиси Zr, и элюент низкой кислотности (0,1М HCl). РНЧ продукта превышает 99,9%, радиохимическая чистота составляет более 95%, активность элюируемого ⁶⁸Ga – до 3 ГБк. Стеклянная колонка генератора размещается в радиационно-защитном вольфрамовом корпусе. Элюат на его выходе содержит значительное количество долгоживущего РН ⁶⁸Ge (Т_{1/2.м} = 271 сут), доля которого в продукте составляет (1-5)·10-3/МБк. Величины выхода 68Ga, составляющего более 70 %, и его удельной активности не достигают своих теоретических максимальных величин из-за присутствия в этом РН металлических примесей Zn, Ti, Fe. Максимум генерируемой активности ⁶⁸Ga достигается через 14,1 ч, на практике может проводиться до трех элюирований ⁶⁸Ga в день. Период использования генератора составляет 12 мес. Материнский PH ⁶⁸Ge производится на циклотроне с Е_п ≥ 30 МэВ по реакции ⁶⁹Ga(p,2n)⁶⁸Ge.

Другой промышленный генератор ⁸²Sr/⁸²Rb [12, 24, 50], применяемый для производства ⁸²Rb, характеризуется более ограниченным использованием (в кардиологии). Это связано с труднодоступностью материнского PH ⁸²Sr высокой требуемой чистоты, получаемого на циклотроне с E_п ≥ 50 МэВ по реакции ⁸⁵Rb(p,4n)⁸²Sr, высокой стоимостью и необходимостью ежемесячной замены. В этом генераторе используются синтетические смолы и неорганические ионообменники такие, как ZrO₂. Материнский радионуклид ⁸²Sr $(T_{\frac{1}{2},M} = 25,6 \text{ сут})$ может загружаться в колонку с активностью А_м = 3,3–5,6 ГБк. Элюирование производится 2 % раствором NaCl. В настоящее время изготавливаются коммерческие генераторы с активностью продукта ⁸²Rb до 3,7 ГБк, выходом до 10-40 % и содержанием примесного ⁸²Sr в продукте 10⁻⁶% на 1 мл.

Целый ряд других генераторов представляет значительный потенциал для дальнейшего развития ПЭТ, в частности, ⁴⁴Ti/⁴⁴Sc, ⁶²Zn/⁶²Cu и ¹¹⁰Sn/^{110m}In.

Генератор ⁴⁴Ti/⁴⁴Sc по сравнению с генератором ⁶⁸Ge/⁶⁸Ga обеспечивает получение более долгоживущего дочернего РН, пригодного для продолжительных ПЭТ-измерений при решении задач тераностики [50, 51]. При этом величина ${\rm T}_{{}_{1\!\!2\!,M}}$ ${}^{44}{\rm Ti}$ существенно больше, чем Т_{1/2,м} ⁶⁸Ge, и составляет более 60 лет. При элюировании с использованием HCl или HCl/H2C2O4 достигаемая в 20 мл элюата активность ⁴⁴Sc равна 180 МБк. Обеспечиваемая при этом малая активность примесного ⁴⁴Ті (менее 10 Бк) делает продукт пригодным для радиомечения. Производство материнского PH 44Ti по реакции прирSc(p,2n)44Ti требует применения циклотрона с Е_п ≥ 30 МэВ и длительного облучения мишени (400 ч) при І_п = 200 мкА. При этом выход продукта составляет всего 185 МБк, что достаточно для изготовления лишь одного генератора.

Генератор ⁶²Zn/ ⁶²Cu применяется для производства ⁶²Cu, используемого в исследованиях гипоксии биотканей и опухолей. Материнский PH ⁶²Zn производится на циклотроне с $E_n \sim 30$ MэB по реакции ^{прир}Cu(p,x)⁶²Zn. Дочерний PH элюируется в анион-обменной колонке генератора с применением 2М HCl. Малая величина Т_{½,м} ⁶²Zn (9,26 ч) требует для его клинических применений ежедневных поставок этого генератора.

В генераторе ¹¹⁰Sn/^{110m}In получают изотопно-чистый ^{110m}In при элюировании в колонке 1 мл 0,02М HCl. Позитронный эмиттер ^{110m}In может применяться для количественных ПЭТ-исследований совместно с аналогами соединений, используемыми в ОФЭКТ (меченными ¹¹¹In). Недостатком этого генератора является сравнительно небольшой период полураспада, используемого в нем материнского PH (4,1 ч).

5. Перспективы развития радионуклидного обеспечения ПЭТ

В основе применений РН лежат данные по их радиоактивному распаду. Невозможность решения расширяющегося числа задач ПЭТ-визуализации только с помощью уже используемых β⁺-излучателей делает актуальной потребность разработки новых РН [52]. Они будут перспективны для применения в ПЭТ, если [6]:

- обладают конкурентоспособной себестоимостью и подходящими свойствами распада для обеспечения приемлемого качества изображения и низкой радиационной нагрузки;
- могут быть произведены с активностью в одном цикле облучения >> 1 Ки и химической и радиохимической чистотой на уровне более 99 %;
- производятся с использованием хорошо отработанных мишеней и мишенной химии в части выделения продукта и восстановления мишенного материала;
- стоимость производства РН оказывается значительно ниже 10 евро/мКи.

Заметную роль в мотивации дальнейшего развития циклотронного производства РН для ПЭТ, достигшего уровня совершенствования, играет установленная возможность синтеза РФП, меченных РН с долгим периодом биологического полувыведения [25, 34, 43, 51]. Сегодня требуется дальнейшая разработка РН – меток РФП, используемых для диагностики НЭО и планирования РНТ (⁶⁸Ga), радиоиммунной терапии и отбора пациентов для нее, дозиметрии *in vivo* (¹²⁴I, ⁸⁹Zr), исследования гипоксии и перфузии (⁶⁴Cu), планирования РНТ (⁸⁶Y, ^{43,44}Sc), исследования фармакокинетики нанотел, полимеров, антител (⁹⁰Nb).

Ожидается, что в будущем лидерами в мечении препаратов для ПЭТ будут ¹⁸F, ⁶⁸Ga и ⁸⁹Zr. При этом РФП на основе ⁶⁸Ga смогут стать в ряде случаев лучшей альтернативой препаратам, меченным ¹⁸F [8, 53]. В пользу разработки новых препаратов на основе ⁶⁸Ga говорят и ставшие коммерчески доступными наборы реагентов для них, а также активно разрабатываемое его производство не только на радионуклидном генераторе, но и на циклотроне. К препаратам, обладающим в ПЭТ-исследованиях НЭО более высокой чувствительностью и специфичностью, относятся пептиды, меченные ⁶⁸Ga: ⁶⁸Ga-DOTA-TOC, ⁶⁸Ga-DOTA-TATE и ⁶⁸Ga-DOTA-NOC [54].

Прогнозируется снижение роли ¹²⁴I из-за дорогостоящей его химической обработки и сравнительно большой дозовой нагрузки на пациента. Радионуклид ⁸⁹Zr призван заменить ¹²⁴I, сопутствующее жесткое γ-излучение которого создает проблемы в его клиническом использовании. Используемый в ПЭТ позитронный эмиттер ⁸⁹Zr может найти свое практическое применение и в PHT.

Перспективными для ПЭТ остаются радионуклиды ⁶⁴Си и ^{43,44}Sc, хотя оптимальные молекулы для радиомечения ими пока не определены. Радионуклиды ^{43,44}Sc имеют большой потенциал для тераностики в паре с ⁴⁷Sc. Так, ⁴⁴Sc характеризуется высокой долей распада по механизму β^+ (94 %), а ⁴³Sc демонстрирует свойства, подобные свойствам ⁴⁴Sc, но обладает побочным у-излучением с меньшей энергией (373 кэВ), обеспечивая низкую лучевую нагрузку на пациента. Кроме того, ⁴³Sc имеет в ~ 3 раза больший $T_{1/2}$, чем ⁶⁸Ga, и способен заменить ⁶⁸Ga в ПЭТ-диагностике и планировании пептид-рецепторной терапии с ¹⁷⁷Lu- и ⁹⁰Y-DOTA радиобиоконъюгатами. Однако широкое применение генераторного PH ⁴⁴Sc ограничивается проблемами производства требуемой активности материнского РН 44Ti [50].

Найдут свое дальнейшее развитие комбинированные γ- и позитронные PH. Так, циклотронный PH ⁴³Sc способен оказаться полезным как для ПЭТ, так и для ОФЭКТ.

Полученные в последнее время гидролитически стабильные соединения позитронного эмиттера ⁴⁵Ti, обладающего привлекательными характеристиками ($T_{1/2} = 3 \text{ ч}, I_{\beta+} = 85 \text{ \%}, E_{\beta+}^{cp} = 0,44 \text{ МэB}$, пренебрежимо малая составляющая ү-излучения), открывают дорогу для его более широкого применения в ПЭТ. Ранее такое использование ограничивалось склонностью соединений Ti(IV) к гидролизу, что затрудняло мечение этим PH препаратов и исключало возможность использования ⁴⁵Ti в биоконъюгатной химии [55].

Радионуклидная пара ⁶⁸Ga и ¹⁷⁷Lu успешно применяются в мире для диагностики и лечения рака предстательной железы (⁶⁸Ga-PSMA/¹⁷⁷Lu-PSMA [56]), а также для диагностики и рецепторно-таргетной терапии НЭО (⁶⁸Ga-/¹⁷⁷Lu-DOTA-TOC/DOTA-TATE [35]).

Циклотронное производство РН развивается по трем направлениям: исследование радиоактивного распада ядер, разработка высокотоковых мишенных систем для промышленного производства РН, совершенствование методов выделения РН из обученного материала и гарантия качества. В этой связи активно проводятся исследования по разработке конструкций мишеней, мишенных материалов, мишенной химии. Так, продолжается совершенствование мишеней для производства ¹⁸ F. Надежная его наработка с низким расходом мишенного материала реализовано на новой Н₂¹⁸О мишени конической формы при ее облучении протонами с ${\rm E_n} \sim 18~{\rm M} {\rm \tiny B}$ и ${\rm I_n} > 100$ мк
А [57]. В частности, показано, что на мишени с объемом воды 4 мл при давлении 143 бар и I_п = 145 мкА нарабатываемая активность может достигать 660 ГБк. Для промышленного производства ¹⁸F продемонстрирована также высокая эффективность сферической водной мишени [58].

В целях производства экспериментальных PH разрабатываются мишени на основе сплавов и бинарных соединений (например, Al₂¹²⁴Te₃ и Cu₃⁷⁵As, используемых для производства ¹²⁴I и ⁷³Se соответственно), а также жидких растворов, в частности, Ca(NO₃)₂ ×4H₂O, $Y(NO_3)_3 \times 6H_2O, Zn(NO_3)_2 \times 6H_2O, (NH_4)_6Mo_7O_{24} \times 4H_2O$ [59]. Так, в работе [60] представлены многообещающие результаты по циклотронному производству радиометаллов при облучении протонами с Е_п = 13 МэВ жидких растворов с высокой концентрацией нитратов Zn, Y, Ca, Sr или гептамолибдата аммония (природного содержания) и по технологиям их выделения из облученного материала. Выход радиометаллов ⁶⁸Ga, ⁸⁹Zr, ⁴⁴Sc, ⁸⁶Y, ^{94m}Tc составляет 141 МБк/мкА, 360 МБк/мкА, 4,6 МБк/мкА, 31 МБк/мкА и 40 МБк/мкА соответственно.

Достигаемые токи на жидких мишенях циклотрона, предназначенных для производства ¹⁸F, сегодня уже могут превышать 1000 мкА [49]. В этой связи остается актуальной задача определения энергетического диапазона циклотрона и токов его мишеней, являющихся наилучшим компромиссом для производства РН для ПЭТ.

Одной из важных целей развития генераторного производства РН для ПЭТ является производство радионуклидных генераторов ⁶⁸Ga, ⁶⁴Cu, ⁸⁶Y и наборов реагентов к ним.

Заключение

Сфера и объем применения ПЭТ-радионуклидов постоянно расширяются. К настоящему времени радионуклидное обеспечение ПЭТ достигло высокого уровня развития, при этом существует постоянная необходимость в постоянном совершенствовании технологий производства РН циклотронным и генераторным методами. Так, существует потребность в дальнейшей разработке производства позитронных эмиттеров для рутинного использования в тераностике (^{124,122}I, ⁶²Cu, ⁸⁶Y, ⁶⁸Ga, ^{43,44}Sc, ^{110m}In), РН двойного назначения – для ПЭТ и ОФЭКТ (⁵²Fe, ^{62,64}Cu, ⁶²Zn, ⁶⁶Ga, ⁸¹Rb, ⁷²As, ⁸⁶Y, ^{94m}Tc, ¹²²I), для ПЭТ и МРТ (⁷²As, ^{51,52}Mn), а также РН для мечения наночастиц (⁷²As, ⁶⁴Cu, ⁸⁹Zr). Уровень удовлетворения этой потребности во многом будет определяться темпами разработок новых технологий и оборудования, используемых в циклотронном и генераторном методах производства РН. Актуальной остается задача оптимизации процессов производства как традиционно используемых в ПЭТ $\hat{\beta}^+$ -излучателей ¹⁸F, ¹¹C, ¹³N, ¹⁵O, так и активно развиваемых экспериментальных РН для ПЭТ ⁶⁸Ga, ⁸²Rb, ⁸⁹Zr, ¹²⁴I, ⁶⁴Cu, ^{43,44}Sc, ⁸⁶Y, ⁷³Se, ⁹⁰Nb, ⁴⁵Ti. Эта задача решается в направлении максимального увеличения выхода продукта, снижения до минимума уровня нежелательных примесей в нем, а также снижения себестоимости его производства.

Статья подготовлена в рамках Государственного задания № 26.13330.2019/13.1 Министерства образования и науки Российской Федерации

Для цитирования: Хмелев А.В. Анализ состояния радионуклидного обеспечения позитронной эмиссионной томографии // Медицинская радиология и радиационная безопасность. 2019. T. 64. № 6. C. 70–81.

DOI: 10.12737/1024-6177-2019-64-6-70-81

Review

DOI: 10.12737/1024-6177-2019-64-6-70-81

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 6. P. 70-81

Analysis of Positron Emission Tomography Providing with Radionuclides A.V. Khmelev

Federal Research Center for Project Evaluation and Consulting Services, Moscow, Russia. E-mail: ale-khmelev@yandex.ru A.V. Khmelev - Cheif Researcher, Dr. Sci. Phys.-Math., Prof.

Content

Introduction

- 1. General requirements to PET-radionuclides
- 2. Parameters of radionuclide ranging for application in PET
- 3. Positron emitters for different applications. Selection criteria
 - PET-studies
 - Joint PET- and SPECT-studies
 - Theranostics
 - Special applications
- 4. Availability of positron emitters
- 4.1. Cyclotron production of PET-radionuclides
- Conventional radionuclides
- Radionuclides under development
- 4.2. Production of PET-radionuclides on radionuclide generators
- 5. Future development of PET providing with radionuclides

Conclusion

Key words: PET, positron emitters, activity, cyclotron, radionuclide generator

Article received: 28.01.2019. Accepted for publication: 09.10.2019

REFERENCES

- REFERENCES
 1. Townsend DW, Carney JPJ, Yap JT and Hall NC. PET/CT today and tomorrow. J Nucl Med. 2004;45(1):4S-14S.
 2. Saha GB. Basics of PET Imaging. Physics, chemistry and regulation. 2nd ed. New York: Springer; 2010. 241 p.
 3. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia: WB Saunders; 2012. 523 p.
 4. Khmelev V. Positron emission tomography: physical and technical aspects. Moscow: Trovant; 2016. 336 p. (In Russian).
 5. Chart of the Nuclides. Available from: http://www.nndc.bnl.gov
 6. Zimmermann RG. Why are investors not interested in my radio-
- Zimmermann RG. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals. Nucl Med Biol. 2013;40:155-66.
- 7. Kostylev VA, Narkevich BYa. Medical Physics. Moscow: Meditsina; 2008. 460 p. (In Russian).
- 2005 To Statistics for Medicine. Chapter III. Radioisotope production. Ed. by F Azaiez, A Bracco, J Dobeš, A Jokinen, G-E Körner, A Maj, A Murphy, P Van Duppen. Strasbourg: European Science Foundation. 2015. 156 p.
 9. Cyclotron produced radionuclides: physical characteristics and production methods. Technical Report № 468. Vienna: IAEA. 2009.
 10. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL.
- Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27(2):161-9.
- Rosch F, Knapp FF (Russ). Radionuclide generators. In: Handbook of Nuclear Chemistry. V.4. Ed. by A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011: 1935-76.

- 12. Shimchuk GrG, Shimchuk GG, Kutuzov SG, et. al. Automatized generator system of clinical application for bolus and long-term injections of chloride ⁸²Rb. Medical Physics. 2013;(2):67-75. (In Russian)
- 13. Miller PW, Nicholas J, Long NJ, Gee AD. Synthesis of ¹¹C, ¹⁸F, ¹⁵O and ¹³N radiolabels for positron emission tomography. Angew Chem Int Ed. 2008;47(47):8998-9033.
- 14. Beyer G-J, Comor JJ. The potential of PET cyclotron installations for the production of uncommon positron emitting isotopes. In: Int Conf Clin PET and Molecular Nucl Med. 2007 Nov 10–14; Bangkok: 2007; 54-55
- 15. Papash A, Alenitsky Yu. On commercial H- cyclotrons up to 30 MeV energy range for production of medicine isotopes. Problems Atomic Sci. and Technol. 2008;(5):143-5.
- 16. Schmor PW. Review of cyclotrons used in the production of radioisotopes for biomedical applications. In: Proceedings of Cyclotrons 2010. Lanzhou: 2010. 419-24.
- Lanzhou: 2010, 419-24.
 Qaim SM. Cyclotron production of medical radionuclides. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1903-1933.
 Kodina GE, Krasikova RN. Methods of production of radiopharma-
- ceuticals and radionuclide generators for nuclear medicine. Mos-cow: MEI Publishing House; 2014. 282 p. (In Russian).
- Khmelev AV. Nuclear medicine: physics, equipment, technologies. Moscow: NRNU MEPhI; 2018. 440 p. (In Russian).
 Antoni G, Kihlberg T, Langstrom B. ¹¹C: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Viewa 7 Kiewa 6 P. C. Lawa 7 Directory 2018. A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 1977-2021.
 21. Ross TL, Wester HJ. ¹⁸F: labeling chemistry and labeled compounds.

- Ross TL, Wester HJ. ¹⁸F: labeling chemistry and labeled compounds. In: Handbook of Nuclear Chemistry. V. 4. Editors A Vértes, S Nagy, Z Klencsár, RG Lovas, F Rösch. Berlin: Springer. 2011. 2022-71.
 Kilian K. ⁶⁸Ga-DOTA and analogs: current status and future per-spectives. Rep Pract Oncol Radiother. 2014;19(L):S13-S21.
 Velikyan I. Positron emitting [⁶⁸Ga]Ga-based imaging agents: chemistry and diversity. Med Chem. 2011;7(5):345-79.
 Davidson CD, Phenix CP, Tai TC, Khaper N, Lees SJ. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging. 2018;8(3):200-27.
 Severin GW, Engle JW, Nickles RJ, Barnhart TE. 89Zr radiochem-istry for PET. Med Chem. 2011;7(5):389-94.
- istry for PET. Med Chem. 2011;7(5):389-94.
- 26. Walther M, Gebhardt P, Grosse-Gehling P, et al. Implementation of ⁸⁹Zr production and in vivo imaging of B-cells in mice with ⁸⁹Zr labeled anti-B-cell antibodies by small animal PET/CT. Appl Rad Isot. 2011;69:852-7
- 27. Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a prom-ising positron emitter for organic PET chemistry. Molecules. 2010;15:2686-718.
- 28. Stocklin G, Pike VW. Radiopharmaceuticals for positron emission tomography: methodological aspects. New York; 1993, 178 p. 29. Dmitriev SN, Zaitseva NG, Ochkin AV. Radionuclides for nuclear
- Dintriev SN, Zaitseva NG, Ochkin AV. Radiofuctides for hiddean medicine and ecology. Dubna UINR; 2001. 103 p. (In Russian).
 Chopra D. Radiolabeled nanoparticles for diagnosis and treatment of cancer. In: Radioisotopes applications in bio-medical science. Chapter 11. Ed. N. Singh. 2011: available from: http://www.intechopen.com/books/radioisotopes-applications-in-bio-medicalscience/radiolabeled-nanoparticles-for-diagnosis-and-treatmentof-cancer
- Veryevkin AA, Stervoedov NG, Kovtun GP. Production and application short lived and ultra-short lived isotopes in medicine. Reporter of Kharkiv University. 2006;(746):54-64. (In Russian).
 Kurenkov NV, Shubin YN. Radionuclides in nuclear medicine. Medical Radiology. 1996;41(5):54-63. (In Russian).
 Narkevich BYa. Single photon emission computer tomography with positron emitting radionarmaceuticals: status and growth
- with positron emitting radioparmaceuticals: status and growth area. Medical Radiology and Radiation Safety. 2000;45(6):56-63. (In Russian).
- 34. Rosch F, Baum RB. Generator-based PET radiopharmaceuticals for
- Kosch F, Baum RB. Generator-based PE1 radiopharmaceuticals for molecular imaging of tumors: on the way to theranostics. Dalton Transactions. 2011; 40(23):6104-11.
 Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K. ⁶⁸Gallium- and ⁹⁰Yttrium-/ ¹⁷⁷Lutetium: "theranostic twins" for diagnosis and treatment of NETs. Ann Nucl Med. 2015; 29:1-7.
 Rosch F, Riss P. The renaissance of the ⁶⁸Ga/⁶⁸Ga radionuclide gen-erator initiates new developments in ⁶⁸Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10(16):1633-68
- erator initiates new developments in 56Ga radiopharmaceurcar chemistry. Curr Top Med Chem. 2010;10(16):1633-68.
 37. Ellison PA, Chenb F, Barnharta TE, Nickles RJ, Caia W, De Jesus OT. Production and isolation of ⁷²As from proton irradiation of 1270 C for the language of the state of the state of DET/MPL counts. enriched ⁷²GeO₂ for the development of targeted PET/MRI agents. In: WTTC15 Proc. Prague: 2014. 110-1.

- Wooten AL, Lewis BC, Laforest R, Smith SV, Lapi SE. Cyclotron production and PET/MRI imaging of ⁵²Mn. In: WTTC15 Proc. Prague: 2014. 97-9. 39. Xing Y, Zhao J, Shi X, Conti P.S, Chen K. Recent development of
- radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotechnol. 2014;2(2):1016-25.
- Bogdanov PV, Vorogushin MF, Lamzin EA, et al. Development of compact cyclotrons CC-18/9, CC-12 and MCC-30/15 for production of medical radionuclides. J Tech Phys. 2011;81(10):68-83. (In Russian).
- 41. Wolf AP, Jones WB. Cyclotrons for biomedical radioisotope production. Radiochimica Acta. 1983;34(1/2):1-7
- 42. Pagani M, Stone-Elander S, Larsson SA. Alternative positron emission tomography with non-conventional positron emitters: effects
- of their physical properties on image quality and potential clinical applications. Eur J Nucl Med. 1997;24(10):1301-27.
 43. Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018; 3(1):35-46.
- 44. Bakhtiari M, Enferadi M, Sadeghi M. Accelerator production of the positron emitter 89Zr. Annals of Nuclear Energy. 2012; 41:93-107.
- 45. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009; 36(7):729-39
- 46. McCarthy DW, Shefer RE, Klinkowstein RE, et al. Efficient production of high specific activity ⁶⁴Cu using a biomedical cyclotron. Nucl Med Biol. 1997; 24:35-49.
- Pandey MK, Byrne JF, Jiang H, Packard AB, De Grado TR. Cyclo-tron production of ⁶⁸Ga via the ⁶⁸Zn(p,n)⁶⁸Ga reaction in aqueous
- 48. Walczak R, Krajewski S, Szkliniarz K, et al. Cyclotron production of ⁴³Sc for PET imaging. EJNMMI Phys. 2015; 2:33-43.
 49. Onim M. Davidorment of avidation and discussion of the formula in the second se
- Qaim M. Development of cyclotron radionuclides for medical ap-plications: from fundamental nuclear data to sophisticated production technology. In: Proc of 15th Int Workshop on targetry and target chemistry. Prague: 2014. 18-20.
- 50. Pillai MRA, Dash A, Knapp FFJr. Radionuclide generator: ready source diagnostic and therapeutic radionuclides for nuclear medi-cine applications. In: Radiopharmaceuticals: application, insights and future. Ed. by R Santos-Oliveria. Lambert Academic Publishing. 2016.63-118.
- Filosofov DV, Loktionova NS, Rösch F. A ⁴⁴Ti/⁴⁴Sc radionuclide generator for potential application of ⁴⁴Sc-based PET-radio-pharmaceuticals. Radiochim Acta. 2010; 98(3):149-56.
- Jalilian AR. The application of unconventional PET tracers in nuclear medicine. Iran J Nucl Med. 2009; 17(1):1-11.
 Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace (¹⁸)F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12(2):102-5.
- 54. Tlostanova MS, Khodjibekova MM, Panfilenko AA, et al. Capabilities of combined positron emission and computer tomography in diagnosis of neuroendocrine tumors: first experience of using of native synthesis module 68Ga-DOTA-TATE. STM. 2016; 8(4):51-8. (In Russian)
- Severin GW, Fonslet J, Jensen AI, Zhuravlev F. Hydroliticaly stable titanium-45. In: WTTC15 Proc. Prague: 2014. 103-6.
- 56. Weineisen M, Schottelius M, Simecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostics concept and first proof-of-concept human studies. J Nucl Med. 2015; 56(8):1169-76.
- 57. Devillet FG, Geets J-M, Ghyoot M, et al. Performance of IBA new conical shaped niobium [¹⁸O] water targets. In: Cyclotrons 2013 Proc. Vancouver: 2013. 406-8.
- 58. Zeisler SK, Becker DW, Pavan RA, et al. A water-cooled spherical niobium target for the production of [18F] fluoride. Appl Radiat Isot. 2000; 53(3):449-53
- 59. Smith SV, Jones M, Holmes V. Production and selection of metal PET radioisotopes for molecular imaging. In: Radioisotopes plications in biomedical science. Chapter 10. Ed. N. Singh. 2011: available from: http://www.intechopen.com/books/radioisotopesapplications-in-bio-medical-science/production-and-selection-ofmetal-pet-radioisotopes-for-molecular imaging. 60. Hoehr C, Oehlke E, Hou H, et al. Production of radiometals in
- liquid target. In: WTTC15 Proc. Prague: 2014. P. 41-2.

For citation: Khmelev AV. Analysis of Positron Emission Tomography Providing with Radionuclides. Medical Radiology and Radiation Safety. 2019;64(6):70-81. (Russian).

DOI: 10.12737/1024-6177-2019-64-6-70-81