О ЖУРНАЛЕ

Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.

Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.

Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.

Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.

Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.

Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.

С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.

Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.

Медицинская радиология и радиационная безопасность. 2021. Том 66. № 4  C.77–85

А.Г. Цовьянов1, А.Ю. Комаров1, П.П. Ганцовский1, А.Г. Алексеев2,
М.Р. Попченко1, В.Е. Журавлева1, Н.А. Богданенко1

СРЕДСТВА И МЕТОДЫ ДОЗИМЕТРИИ ВЫСОКОЭНЕРГЕТИЧЕСКОГО
НЕЙТРОННОГО ИЗЛУЧЕНИЯ НА ПРОТОННЫХ УСКОРИТЕЛЯХ

1Федеральный медицинский биофизический центр имени А.И. Бурназяна ФМБА России, Москва. 

2Институт физики высоких энергий РАН, Московская обл. Протвино

Контактное лицо: Артём Юрьевич Комаров: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.  

Содержание

Основные средства и методы дозиметрии нейтронного излучения.

Рассмотрение различных средств и методов регистрации высокоэнергетического нейтронного излучения:

● Активационный

● Трековый

● Пузырьковые детекторы

● Тканеэквивалентная пропорциональная камера

● Замедлитель+конвертор

Сравнение приведенных методов и средств измерений доз высокоэнергетического нейтронного излучения.

Ключевые слова: дозиметрия вторичные нейроны, протонные ускорители, радиационная безопасность

Для цитирования: Цовьянов А.Г., Комаров А.Ю., Ганцовский П.П., Алексеев А.Г., Попченко М.Р., Журавлева В.Е., Богданенко Н.А. Средства и методы дозиметрии высокоэнергетического нейтронного излучения на протонных ускорителях // Медицинская радиология и радиационная безопасность. 2021. Т. 66. № 4. С.77–85.

DOI: 10.12737/1024-6177-2021-66-4-77-85

Список литературы

1. Skrinskiy AN. Accelerator and Detector Prospects of Elementary Particle Physics. DOI: 10.3367/UFNr.0138.198209a.0003 (In Russian).

2. Agafonov AV. Accelerators in Medicine 15th Meeting on Charged Particle Accelerators 1997. Vol. 2. (In Russian).

3. Knyazev VV, Komochkov MM, Lebedev VN, Mescherova IV, Mosharov AI. Radiation Safety at High-Energy Proton Accelerators. Atomic Energy. 1969;27;3 (In Russian).

4. Egorova MS, et al. Characteristics of Secondary Radiation from a 7 GeV Proton Accelerator. Moscow, Institute of Biophysics, Ministry of Health of the USSR Publ., 1966 (In Russian).

5. Aleinikov VE, Lumps MM. Dosimetric characteristics of radiation fields of JINR nuclear physics facilities and adequacy of detector readings to radiation dose. 1981 (In Russian).

6. Alexeev AG, Kharlampiev SA. Dosimetric Characteristics of the IHEP Neutron Reference Fields. Rad. Prot. Dosim. 1997;70:1-4:341-344.

7. MU 2.6.5.028-2016. Determination of Individual Effective and Equivalent Doses and Organization of Control of Occupational Exposure in the Conditions of Planned Exposure. General Requirements (In Russian).

8. MU 2.6.5.026-2016. Dosimetric Control of External Occupational Exposure. General Requirements. Methodical Instructions (In Russian).

9. Yurevich VI. Spectrometry of High-Energy Neutrons. JINR. 2012 (In Russian).

10. Krasavin EA, Boreiko AV, Koltovaya NA, Govorun RD, Komova OV, Timoshenko GN. Radiobiological research at JINR Dubna. JINR. 2015.182 p. (In Russian).

11. Sannikov AV, Peleshko VN, Savitskaya EN, Kuptsov SI, Sukharev MM. Multiball Neutron Spectrometer Based on the RSU-01 Serial Instrument: IHEP. Preprint 2007−21. Protvino Publ., 2007. 12 p. (In Russian).

12. Complex of Emergency Neutron Dosimetry "CORDON-A". Description of the Type of Measuring Instrument (In Russian).

13. Recommendations for Instrumentation of Dosimetric and Radiometric Control in Accordance with NRB-99 and OSPORB-99 (In Russian).

14. Alekseev AG, Baranenkov NN, Bystrov YuV. Investigation of the Sensitivity of an Individual Neutron Dosimeter PDM-303 to High-Energy Neutron Radiation. XVI Meeting on Charged Particle Accelerators. SSC RF Institute for High Energy Physics, October 20-22, Protvino, 1998 (In Russian).

15. Mokrov YV. Development of Methods and Means of Metrological Support for Radiation Monitoring of Neutron Radiation at Accelerators and Pulsed Reactors. Abstract. Dubna Publ., 1998 (In Russian).

16. Sanitary Rules for the Placement and Operation of Proton Accelerators with Energies above 100 MeV (In Russian).

17. Tsovyanov AG, Gantsovsky PP, Shandala NK, Shinkarev SM, Romanov VV. Problems of Ensuring Radiation Safety of Personnel when Operating Proton Therapeutic Accelerators Using the Example of the Proton Therapy Center in Dmitrovgrad. Med. Radiology and Radiation Safety. 2019;64;2:33-40. DOI: 10.12737/article_5ca5e40c3f79b9.76178616 (In Russian).

18. Alekseev AG, Bystrov YV, Golovachik VT, Kharlampiev SA. Mixed Radiation Dosimeter Based on Ionization Chambers for Metrological Support of Radiation Monitoring at an Accelerator. IHEP Preprint 98-68. Protvino Publ., 1998 (In Russian).

19. Komochcov MM, Lebedev VN. A Practical Guide to Radiation Safety at Charged Particle Accelerators. Voscow, Energoatomizdat Publ., 1986 (In Russian).

20. Egorova MS. Radiation-Dosimetric Characteristics of Working Conditions at a Proton Synchrotron with an Energy of 7 GeV. Moscow, Institute of Biophysics, Ministry of Health of the USSR Publ., 1967 (In Russian).

21. Krupny GI, Stetsenko GN, Yanovich AA. Methodical Problems the Use of Threshold Activation Detectors in Radiation Researches at the Ihep Accelerator Complex. IHEP Preprint 2000−30. Protvino Publ., 2000 (In Russian).

22. Kazumasa S, Takeshi I, Toshiso K. Design of a High Energy Neutron Dosimeter Using CR-39 with Multi-Layer Radiator Radiation Measurements. 2011;46(12):1778-1781.

23. Goldobin VN, Shirokov AY, Mynkina NV, Peleshko VN. Hygienic Assessment of the Working Conditions of the Staff of the Institute of High Energy Physics and Monitoring of Some Health Indices. Emergency Medicine. 2018;20(1) (In Russian).

24. Komochcov MM, Mokrov YV. Individual Dosimetric Control at JINR. Communications of the Joint Institute for Nuclear Research. Dubna Publ., 1994. Р. 16-94-178 (In Russian).

25. Gelfand EK, Komochcov MM, Manko BV, Salatskaya MY, Sychev BS. Using the IFCn Method to Determine the Equivalent Radiation Dose behind the Shielding of Proton Accelerators. Atomic Energy. 1980;49(2):108-112 (In Russian).

26. Sannikov AV. Development of Methods for Spectrometry of Neutron Radiation at Large Proton Accelerators. Abstract. Protvino Publ., 2006 (In Russian).

27. Clinton P, Anderson Meson, Michael W, Mallett Dennis G, Vasilik George J, Littlejohn Joseph R. High-Energy Neutron Dosimetry at TKE Physics Facility Cortez. Los Alamos National Laboratory. 1990.

28. Akselrod MS.  Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry Concepts and Trends in Medical Radiation Dosiumetry. Proceedings of SSD Summer School. AIP Conference Proceedings. 2011;1345(1):274-302. 

29. Alexeev AG. Application of Tissue Equivalent Proportional Counter in IHEP Radiation Protection. IHEP Preprint 95-69. Protvino Publ., 1995.

30. Alexeev AG, Kharlampiev SA. Energy Response of Tissue Equivalent Proportional Counter for Neutron Above 20 MeV. IHEP Preprint 97-18. Protvino Publ., 1997.

31. Nunomiya T, Nakao N, Kim E, Kurosawa T, Taniguchi S, Sasaki M, Iwase H, Nakamura T, Uwamino Y, Shibata T, Ito S, Perry D R & Wright P. Measurements of Neutron Attenuation through Iron and Concrete at ISIS. Journal of Nuclear Science and Technology. 2000;Suppl. 1 (March):158-161.

32. Improved Response of Bubble Detectors' to High-Energy Neutrons Stefano Agosteo Marco Silari and Luisa Uirid? Politecnico di Milano, Dipartimento di Ingegneria Nucleare. Milan, Italy  CERN, 1211 Geneva 23, Switzerland.

33. Kryuchkov VP. Hadron Dosimeter. Invention Patent. SU 1521057 

(In Russian).

34. Mamaev AM, Peleshko VN, Savitskaya EN, Sannikov AV, Sukharev MM, Sukhikh SE. Extended Energy Range Passive Neutron Dosimeter for High Energy Accelerators. Protvino, 2019 (In Russian).

35. Peleshko VN., Savitskaya EN., Sannikov AV. Optimization of the Design of a Neutron Dosimeter with an Extended Energy Range for High-Energy Accelerators. Protvino, 2014 (In Russian).

36. Beskrovnaya LG., Guseva SV., Timoshenko GN. A Method for Monitoring Neutron Fields Around High-Energy Accelerators. Letters to ECHAYA. 2018;15;3(215):286-294 (In Russian).

37. Dinara N, Pozzia F, Silaria M, Puzob P, Chiriottic S, Saint-Hubertc MDe, Vanhaverec F, Hoeyc OVan, Orchardd GM, Wakerd AJ. Instrument Intercomparison in the High-Energy Field at the CERN-EU Reference Field (CERF) Facility and Comparison with the 2017 FLUKA Simulations. 

38. Olsher, et al. Health Physics. 2000;79;2:170ff. 

39. Bhaskar Mukherjee, Wolfgang Clement, Stefan Simrock. Neutron Field Characterisation in a High-Energy Proton–Synchrotron Environment Using Bubble Detectors. Radiation Measurements. 2008;43;Issues 2-6, February-June:554-557.

 PDF (RUS) Полная версия статьи

 Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. 

Финансирование. Исследование не имело спонсорской поддержки.

Участие авторов. Cтатья подготовлена с равным участием авторов.  

Поступила: 30.03.2021.

Принята к публикации: 20.04.2021.

Адрес редакции журнала

 

123098, Москва, ул. Живописная, 46 Телефон: (499) 190-95-51. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Местонахождение журнала

Посещаемость

2764466
Сегодня
Вчера
На этой нед.
На прошл. нед.
В этом мес.
В прошл. мес.
За все время
360
4471
22850
18409
72209
75709
2764466


Ваш IP:216.73.216.156