О ЖУРНАЛЕ

Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.

Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.

Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.

Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.

Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.

Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.

С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.

Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.

Медицинская радиология и радиационная безопасность. 2015. Том 60. № 2. С. 66-81

ОБЗОР

Ю.Н. Корыстов

АНАЛИЗ РАДИОБИОЛОГИЧЕСКИХ ДАННЫХ ДЛЯ ОЦЕНКИ КАНЦЕРОГЕННОГО РИСКА МАЛЫХ ДОЗ ИОНИЗИРУЮЩЕЙ РАДИАЦИИ

Институт теоретической и экспериментальной биофизики РАН, Московская обл., Пущино, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

СОДЕРЖАНИЕ

1. Введение

2. Об экспериментальном обосновании линейной беспороговой дозовой зависимости стохастических эффектов радиации

3. Передача мишени дозы, поглощённой вне клетки: факторы, которые могут увеличить объём мишени и снизить эффективную дозу

3.1. Эффект облучённой среды

3.2. Эффект свидетеля

4. Индуцируемая радиацией нестабильность генома

5. Репарация ДНК и элиминация мутантных клеток: факторы, которые могут уменьшить объём мишени и увеличить эффективную дозу

5.1. Роль репарации ДНК в радиационном канцерогенезе

5.2. Стимуляция противоопухолевого иммунитета и апоптоза малыми дозами радиации: активация элиминации трансформированных клеток и подавление роста опухолей

6. Зависимость стохастических эффектов радиации от мощности дозы

7. Влияние малых доз ионизирующей радиации на канцерогенез: экспериментальные данные

8. Выводы

СПИСОК ЛИТЕРАТУРЫ

  1. Котеров А.Н. От очень малых до очень больших доз радиации: новые данные по установлению диапазонов и их экспериментально-эпидемиологические обоснования // Мед. радиол. и радиац. безопасность. 2013. Т. 58. № 2. С. 5-21.
  2. Dauer L.T., Brooks A.L., Hoel D.G. et al. Review and evaluation of updated research on the health effects associated with low-dose ionising radiation // Radiat. Prot. Dosimetry. 2010. Vol. 140, no. 2. P. 103-136.
  3. Muller H.J. Radiation and genetics // Amer. Nat. 1930. Vol. 64. P. 220-257.
  4. Brues A.M. A critique of the linear theory of carcinogenesis: present data on human leukemgenesis by radiation indicate that a nonlinear relation is more probable // Science. 1958. Vol. 128. P. 693-699.
  5. Ильин Л.А. Реалии и мифы Чернобыля. М.: ALARA limited. 1994. 445 c.
  6. Котеров А.Н. Малые дозы радиации: факты и мифы. Книга первая. Основные понятия и нестабильность генома. М.: Изд-во ФМБЦ им. А.И. Бурназяна ФМБА России. 2010. 283 с.
  7. Петин В.Г., Пронкевич М.Д. Анализ действия малых доз ионизирующего излучения на онкозаболеваемость человека // Радиация и риск. 2012. Т. 21. № 1. С. 38-56.
  8. Averbeck D. Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation? // Health Phys. 2009. Vol. 97. No. 5. P. 493-504.
  9. Di Majo V., Rebessi S., Pazzaglia S. et al. Carcinogenesis in laboratory mice after low doses of ionizing radiation. // Radiat. Res. 2003. Vol. 159. No. 1. P. 102-108.
  10. Lacoste-Collin L., Jozan S., Cances-Lauwers V. et al. Effect of continuous irradiation with a very low dose of gamma rays on life span and the immune system in SJL mice prone to B-cell lymphoma. // Radiat. Res. 2007. Vol. 168. No. 6. P. 725-732.
  11. Luckey T.D. Atomic bomb health benefits // Dose-Response, 2008. Vol. 6. No. 4. P. 369-382.
  12. Mitchel R.E.J., Jackson J.S., Mccann R.A. et al. Adaptive response modification of latency for radiation-induced myeloid leukemia in CBA/H mice // Radiat. Res. 1999. Vol. 152. No. 3. P. 273-279.
  13. Pollycove M., Feinendegen L.E. Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage // Hum. Exp. Toxicol. 2003. Vol. 22. No. 6. P. 290-306.
  14. Prise K.M. New advances in radiation biology // Occupat. Medicine. 2006. Vol. 56. No. 3. P. 156-161.
  15. Suzuki K., Yamashita S. Low-dose radiation exposure and carcinogenesis // Jpn. J. Clin. Oncol. 2012. Vol. 42. No. 7. P. 563-568.
  16. Vaiserman A.M. Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment // Dose-Response, 2010. Vol. 8. No. 2. P. 172-191.
  17. Prasad K.N., Cole W.C., Haase G.M. Health risks of low dose ionizing radiation in humans: a review // Exp. Biol. Med. 2004. Vol. 229. No. 5. P. 378-382.
  18. Unated Nations. UNSCEAR 2008. Report to the General Assembly, with Scientific Annexes. Sources and effects of ionizing radiation. Volume II. Annex D. Health effects due to radiation from Chernobyl accident. Unated Nations. New York. 2011. P. 45—220.
  19. Prasad K.N., Cole W.C., Haase G.M. Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage // Brit. J. Radiol. 2004. Vol. 77. No. 914. P. 97-99.
  20. ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection // Annals of the ICRP 1991. Vol. 21. No. 1-3.
  21. Standards for protection against radiation-Nuclear Regulatory Commission. Final rule. Federal Register. 1991. Vol. 56. P. 23360-23474.
  22. Biological effects of ionizing radiation BEIR V. National Academic Press: Committee on the Biological Effects of Ionizing Radiation. Washington: DC. 1990.
  23. Kuo S.S., Saad A.H., Koong A.C. et al. Potassium-channel activation in response to low doses of gamma-irradiation involves reactive oxygen intermediates in nonexcitatory cells // Proc. Acad. Sci. USA. 1993. Vol. 90. No. 3. P. 908-912.
  24. Prasad K.N. Handbook of Radiobiology. 2nd ed. Boca Raton. FL: CRC Press. 1995. 352 p.
  25. Rothkamm K., Lobrich M. From the cover: evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100. No. 9. P. 5057-5062.
  26. Golfier S., Jost G., Pietsch H. et al. Dicentric chromosomes and γ-H2AX foci formation in lymphocytes of human blood samples exposed to a CT scanner: a direct comparison of dose response relationships // Radiat. Prot. Dosimetry. 2009. Vol. 134. No. 1. P. 55-61.
  27. Mancuso M., Pasquali E., Leonardi S. et al. Oncogenic bystander radiation effects in patchedheterozygous mouse cerebellum // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105. No. 34. P. 12445-12450.
  28. Grudzenskia S., Rathsa A., Conrada S. et al. Inducible response required for repair of low-dose radiation damage in human fibroblasts // Proc. Acad. Sci. USA. 2010. Vol. 107. No. 32. P. 14205-14210.
  29. Neumaier T., Swensonb J., Phamd C. et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells // Proc. Natl. Acad. Sci. USA. 2011. Vol. 109. No. 2. P. 443-448.
  30. Baure J., Izadi A., Suarez V. et al. Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity // Mutagenesis. 2009. Vol. 24. No. 2. P. 161-167.
  31. de Feraudy S., Revet I., Bezrookove V. et al. A minority of foci or pan-nuclear apoptotic staining of γ-H2AX in the S phase after UV damage contain DNA double-strand breaks // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107. No. 15. P. 6870-6875.
  32. Korystov Y.N., Shaposhnikova V.V., Korystova A.F. et al. Detection of reactive oxygen species induced by radiation in cells using the dichlorofluorescein assay // Radiat. Res. 2007. Vol. 168. No. 2. P. 226-232.
  33. Wan X.S., Zhou Z., Kennedy A.R. Adaptation of the dichlorofluorescein assay for detection of radiation induced oxidative stress in cultured cells // Radiat. Res. 2003. Vol. 160. No. 5. P. 622-630.
  34. Wan X.S., Zhou Z., Ware J.H. et al. Standardization of a fluorometric assay for measuring oxidative stress in irradiated cells // Radiat. Res. 2005. Vol. 163. No. 2. P. 232-240.
  35. Korystov Y.N. About the role of extracellular radiation induced oxidants in cell oxidative stress at irradiation determined with the dichlorofluorescein assay // Radiat. Res. 2008. Vol. 170. No. 3. P. 407-408.
  36. Kumagai J., Nakama M., Miyazaki T. et al. Scavenging of long-lived radicals by (-)-epigallocatechin-3-O-gallate and simultaneous suppression of mutation in irradiated mammalian cells // Radiat. Phys. Chem. 2002. Vol. 64. No. 4. P. 293-297.
  37. Davies M.J., Fu S., Dean R.T. Protein hydroperoxides can give rise to reactive free radicals // Biochem. J. 1995. Vol. 305. No. 2. P. 643-649.
  38. Dean R.T., Gieseg S., Davies M.J. Reactive species and their accumulation on radical-damaged proteins // Trends Biochem. Sci. 1993. Vol. 18. No. 11. P. 437-441.
  39. Pattison D.I., Dean R.T., Davies M.J. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s // Toxicology, 2002. Vol. 177. No. 1. P. 23-37.
  40. Simpson J.A., Narita S., Gieseg S. et al. Long-lived reactive species on free-radical-damaged proteins // Biochem. J. 1992. Vol. 282. No. 3. P. 621-624.
  41. Bruskov V.I., Karp O.E., Garmash S.A. et al. Prolongation of oxidative stress by long-lived reactive protein species induced by X-ray radiation and their genotoxic action // Free Radical Res. 2012. Vol. 46. No. 10. P. 1280-1290.
  42. Котеров А.Н. Перспективы учета «эффекта свидетеля» при оценке радиационных рисков // Медико-биологические проблемы жизнедеятельности. 2011, №1(5), С. 7-20.
  43. Yang, H., Asaad N., Held K.D. Medium-mediated intercellular communication is involved in bystander responses of X-ray irradiated normal human fibroblasts // Oncogene. 2005. Vol. 24. No. 12. P. 2096-2103.
  44. Hu B., Wu L., Han W. et al. The time and spatial effects of bystander response in mammalian cells induced by low dose radiation // Carcinogenesis. 2006. Vol. 27. No. 2. P. 245-251.
  45. Lyng F.M., Seymour C.B., Mothersill C. Oxidative stress in cells exposed to low levels of ionizing radiation // Biochem. Soc. Transact. 2001. Vol. 29. No. 2. P. 350-353.
  46. Morgan W.F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro // Radiat. Res. 2003. Vol. 159. No. 5. P. 567-580.
  47. Shao C., Furusawa Y., Kobayashi Y. et al. Bystander effect induced by counted high-LET particles in confluent human fibroblasts: a mechanistic study // FASEB J. 2003. Vol. 17. No. 11. P. 1422-1427.
  48. Groesser T., Cooper B., Rydberg B. Lack of bystander effects from high-LET radiation for early cytogenetic end points // Radiat. Res. 2008. Vol. 170. No. 6. P. 794-802.
  49. Fournier C., Barberet P., Pouthier T. et al. No evidence for DNA and early cytogenetic damage in bystander cells after heavy-ion microirradiation at two facilities // Radiat. Res. 2009. Vol. 171. No. 5. P. 530-540.
  50. Sowa M.B., Goetz W., Baulch J.E. et al. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells // Int. J. Radiat. Biol. 2010. Vol. 86. No. 2. P. 102-113.
  51. Zhou H., Suzuki M., Geard C.R. et al. Effects of irradiated medium with or without cells on bystander cell responses // Mutat. Res. 2002. Vol. 499. No. 2. P. 135-141.
  52. Эйдус Л.Х., Корыстов Ю.Н. Кислород в радиобиологии. М.:Энергоатомиздат. 1984. 176 с.
  53. Петров Р.В. Иммунология. М.: Медицина. 1982. 368 с.
  54. Coleman W.B., Tsongali G.J. Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation // Clin. Chem. 1995. Vol. 41. No. 5. P. 644-657.
  55. Khanna K.K. Cancer risk and the ATM gene: a continuing debate // J. Nat. Cancer Inst. 2000. Vol. 92. No. 10. P. 795-802.
  56. Truong L.N., Wu X. Prevention of DNA re-replication in eukaryotic cells // J. Mol. Cell Biol. 2011. Vol. 3. No. 1. P. 13-22.
  57. Dugan L.C., Bedford J.S. Are chromosomal instabilities induced by exposure of cultured normal human cells to low- or high-LET radiation? // Radiat. Res. 2003. Vol. 159. No. 3. P. 301-311.
  58. Koterov A.N. Genomic instability at exposure of low dose radiation with low LET. Mythical mechanism of unproved carcinogenic effects // Int. J. Low Radiation (Paris). 2005. Vol. 1. No. 4. P. 376-451.
  59. Котеров А.Н. Отсутствие фактов нестабильности генома после облучения в малых дозах радиацией с низкой ЛПЭ клеток без явных дефектов и организма вне in utero // Радиац. биология. Радиоэкология. 2006. Т. 46. № 5. С. 585-596.
  60. Котеров А.Н. Радиационно-индуцированная нестабильность генома при действии малых доз радиации в научных публикациях и в документах международных организаций последних лет // Мед. радиол. и радиац. безопасность. 2009. Т. 54. № 4. С. 5-13.
  61. Котеров А.Н. История мифа о нестабильности генома при малых дозах радиации. Научная точка, вероятно, поставлена // Мед. радиол. и радиац. безопасность. 2014. Т. 59, № 1. С. 5-19.
  62. Котеров А.Н. Новые факты об отсутствии индукции нестабильности генома при малых дозах радиации с низкой ЛПЭ и соответствующие выводы о пороге эффекта в сообщении НКДАР-2012 (письмо в редакцию) // Радиац. биология. Радиоэкология. 2014. Т. 54. № 3. С. 309-312.
  63. Альферович А.Л., Готлиб В.Я., Пелевина И.И. Изменение пролиферативной активности клеток при действии радиации в малых дозах // Изв. РАН. Сер. Биология. 1995. № 1. С. 15-18.
  64. Korystov Y.N., Eliseeva N.A., Kublik L.N. et al. The effect of low-dose irradiation on proliferation of mammalian cells in vitro // Radiat. Res. 1996. Vol. 146. No. 3. P. 329-332.
  65. Fialkov P.J. Clonal origin of human tumors // Biochim. Biophys. Acta, 1976. Vol. 458. No. 3. P. 283-321.
  66. Trosko J.E., Chang C.C. The role of mutagenesis in carcinogenesis // Photochem. Photobiol. Rev. 1978. Vol. 3. No. 1. P. 135-168.
  67. Bruner S.D., Norman D.P., Verdine G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA // Nature, 2000. Vol. 403. No. 6772. P. 859-866.
  68. Fleck O., Nielsen O. DNA repair // J. Cell Sci. 2004. Vol. 117. No. 4. P. 515-517.
  69. Lindahl T. Instability and decay of the primary structure of DNA // Nature. 1993. Vol. 362. No. 6422. P. 709-715.
  70. Fortini P., Dogliotti E. Base damage and single-strand break repair: echanisms and functional significance of short- and long-patch repair subpathways // DNA Repair. 2007. Vol. 6. No. 4. P. 398-409.
  71. Lieber M.R. The mechanism of human nonhomologous DNA end joining // J. Biol. Chem. 2008. Vol. 283. No. 1. P. 1-5.
  72. Le X.C., Xing J.Z., Lee J. et al. Inducible repair of thymine glycol detected by an ultra sensitive assay for DNA damage // Science, 1998. Vol. 280. No. 5366, pp.1066-1069.
  73. Shadley J.D., Afzal V., Wolff. S. Characterization of the adaptive response to ionizing radiation induced by low doses of X-rays to human lymphocytes // Radiat. Res. 1987. Vol. 111. No. 3. P. 511-517.
  74. Wiencke J.K., Afzal V., Olivieri G. et al. Evidence that the [3H] thymidine-induced adaptive response of human lymphocytes to subsequent doses of X-rays involves the induction of a chromosomal repair mechanism // Mutagenesis, 1986. Vol. 1. No. 5. P. 375-380.
  75. Wolf S. The adaptive response in radiobiology: evolving insights and implications // Environ. Health Persp. 1998. Vol. 106. No. 5. P. 277-283.
  76. Redpath J.L. Radiation induced neoplastic transformation in vitro: evident for a protective effect at low doses of low LET radiation // Cancer Metastasis Rev. 2004. Vol. 23. No. 3-4. P. 333-339.
  77. Azzam E.I., Raaohorst G.P., Mitchel R.E.J. Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10t1/2 mouse embryo cells // Radiat. Res. 1994. Vol. 138. No. 1s. P. S28-S31.
  78. Rigaud O., Papadopoulo D., Moustacchi E. Decreased deletion mutation in radioadapted human lymphoblasts // Radiat. Res. 1993. Vol. 133. No. 1. P. 94-101.
  79. Zhou P.K., Liu X.Y., Sun W.Z. et al. Cultured mouse SR-1 cells exposed to low dose of y-rays become less susceptible to the induction of mutagenesis by radiation as well as bleomycin // Mutagenesis. 1993. Vol. 8. No. 2. P. 109-111.
  80. Dunn G.P., Bruce A.T., Ikeda H. et al. Cancer immunoediting: from immunosurveillance to tumor escape // Nature Immunol. 2002. Vol. 3. No. 11. P. 991-998.
  81. Schreiber R.D., Old L.J., Smyth M.J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion // Science, 2011. Vol. 331. No. 6034. P. 1565—1570.
  82. Liu S.Z. Nonlinear dose-response relationship in the immune system following exposure to ionizing radiation: mechanisms and implications // Nonlinearity Biol. Toxicol. Med. 2003. Vol. 1. No. 1. P. 71-92.
  83. Liu S.Z. Biological effects of low level exposures to ionizing radiation: Theory and practice // Hum. Exp. Toxicol. 2010. Vol. 29. No. 4. P. 275-281.
  84. Pollycove M. Radiobiological basis of low-dose irradiation in prevention and therapy of cancer // Dose-Response. 2007. Vol. 5. No. 1. P. 26-38.
  85. Mitchel R.E.J. Low doses of radiation reduce risk in vivo // Dose-Response. 2007. Vol. 5. No. 1. P. 1-10.
  86. Li X.Y., Li X.J., He R.H. et al. Influence of low dose radiation on the carcinogenic effect of high dose radiation // Chin. J. Radiol. Med. Protect. 2003. Vol. 23. No. 2. P. 411-413. (in Chinese).
  87. Liu S.Z. Cancer control related to stimulation of immunity by low-dose radiation // Dose-Response. 2007. Vol. 5. No. 1. P. 39-47.
  88. Hashimoto S., Shirato H., Hosokawa M. et al. The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor-bearing rats // Radiat. Res. 1999. Vol. 151. No. 6. P. 717-724.
  89. Jin S.Z., Pan X.N., Wu N. et al. Whole-body low dose irradiation promotes the efficacy of conventional radiotherapy for cancer and possible mechanisms // Dose-Response. 2007. Vol. 5. No. 4. P. 349-558.
  90. Sakamoto K., Myogin M., Hosoi Y. Fundamental and clinical studies on cancer control with total or upper half body irradiation // J. Jpn. Soc. Ther. Oncol. 1997. Vol. 9. No. 1. P. 161-175.
  91. Potten C.S. Extreme sensitivity of some intestinal crypt cells to X and γ-irradiation // Nature, 1977. Vol. 269. No. 5628. P. 518-521.
  92. Ли Д.Е. Действие радиации на живые клетки. М: Госатомиздат. 1963. 288 с.
  93. Jaruga P., Dizdaroglu M. Repair of products of oxidative DNA base damage in human cells // Nucleic Acid Res. 1996. Vol. 24. No. 8. P. 1389-1394.
  94. Frankenberg-Schwager M. Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells // Radiat. Environ. Biophys. 1990. Vol. 29. No. 4. P. 273-292.
  95. Lobrich M., Rief N., Kuhne M. et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations // Proc. Acad. Sci. USA. 2005. Vol. 102. No. 25. P. 8984-8989.
  96. Ярмоненко С.П., Вайнсон А.А. Радиобиология человека и животных. М.: Высш. Шк. 2004. 549 c.
  97. Liu S.Z. On radiation hormesis expressed in the immune system // Crit. Rev. Toxicol. 2003. Vol. 33. No. 3-4. P. 431-441.
  98. Ishii-Ohba H., Kobayashi S., Nishimura M. et al. Existence of a threshold-like dose for gamma-ray induction of thymic lymphomas and no susceptibility to radiation-induced solid tumors in SCID mice // Mutat. Res. 2007. Vol. 619. No. 1-2. P. 124-133.
  99. Tanooka H. Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non tumor doses // Int. J. Radiat. Biol. 2001. Vol. 77. No. 5. P. 541-551.
  100. Makinodan T. Cellular and subcellular alteration in immune cells induced by chronic, intermittent exposure in vivo to very low dose of ionizing radiation (ldr) and its ameliorating effects on progression of autoimmune disease and mammary tumor growth // In: Low Dose Irradiation and Biological Defense Mechanisms. In Sugahara T., Sagan L.A., Aoyama T. (eds.). Amsterdam: Exerpta Medica. 1992. P. 233-237.
  101. Crump K.S., Duport P., Jiang H. et al. A meta-analysis of evidence for hormesis in animal radiation carcinogenesis, including a discussion of potential pitfalls in statistical analyses to detect hormesis // J. Toxicol. Environ. Health B. Crit. Rev. 2012. Vol. 15. No. 3. P. 210-231.
  102. Upton A.C., Randolph M L., Conklin, J.W. et al. Late effects of fast neutrons and gamma-rays in mice as influenced by the dose rate of irradiation: Induction of neoplasia // Radiat. Res. 1970. Vol. 41. No. 3. P. 467-491.
  103. Benjamin S.A., Lee A.C., Angleton G.M. et al. Mortality in beagles irradiated during prenatal and postnatal development. II. Contribution of benign and malignant neoplasia // Radiat. Res. 1998. Vol. 150. No. 3. P. 330-348.

Для цитирования: Корыстов Ю.Н. Анализ радиобиологических данных для оценки канцерогенного риска малых доз ионизирующей радиации. Медицинская радиология и радиационная безопасность. 2015. Т. 60. № 2. С. 66-81.

PDF (RUS) Полная версия статьи

Адрес редакции журнала

 

123098, Москва, ул. Живописная, 46 Телефон: (499) 190-95-51. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Местонахождение журнала

Посещаемость

2941610
Сегодня
Вчера
На этой нед.
На прошл. нед.
В этом мес.
В прошл. мес.
За все время
2736
2306
18848
33458
39906
113593
2941610

Прогноз на сегодня
4296


Ваш IP:216.73.216.100