Медицинская радиология и радиационная безопасность. 2017. Том 62. № 5. C. 47-51

РАДИАЦИОННАЯ ФИЗИКА, ТЕХНИКА И ДОЗИМЕТРИЯ

DOI: 10.12737/article_59f300494670a7.65219672

В.А. Климанов1,2, Ж.Ж. Галяутдинова1, Н.Н. Могиленец2, В.В. Смирнов2

РРЕКОНСТРУКЦИЯ ДЕЙСТВУЮЩЕГО СПЕКТРА ТОРМОЗНОГО ИЗЛУЧЕНИЯ МЕДИЦИНСКИХ ЛИНЕЙНЫХ УСКОРИТЕЛЕЙ ЭЛЕКТРОНОВ ПО ГЛУБИННЫМ РАСПРЕДЕЛЕНИЯМ ДОЗЫ В ВОДНОМ ФАНТОМЕ

1. Федеральный медицинский биофизический центр им А.И. Бурназяна ФМБА России, Москва, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. ; 2. Национальный исследовательский ядерный университет МИФИ, Москва

В.А. Климанов – в.н.с., д.ф-м.н., проф.; Ж.Ж. Галяутдинова – зав. лаб.; Н.Н. Могиленец – ст. преподаватель; В.В. Смирнов – с.н.с., к.ф-м.н., доцент

Реферат

Цель: Разработка методики реконструкции действующих спектров тормозного излучения медицинских линейных ускорителей электронов (ЛУЭ) для полей разных размеров по глубинным дозовым распределениям в водном фантоме и определение спектров фотонов для ЛУЭ Varian Trilogy при работе в режиме номинальной энергии фотонов 6МВ.

Материал и методы: Предлагаемая методика основана на применении алгоритма дозовых ядер точечных моноэнергетических мононаправленных источников (тонких лучей (ТЛ)) для расчета глубинного дозового распределения, создаваемого пучками разного поперечного сечения в водном фантоме, и экспериментального измерения этих распределений. Для решения обратной задачи применяются подпрограммы Toolbox Optimtool известного математического пакета MATLAB.

Результаты: Получены энергетические спектры тормозного излучения, генерируемые ЛУЭ Varian Trilogy при разных размерах квадратных полей от 3×3 до 40×40 см, и средние энергии фотонов в зависимости от размеров полей. Определены дозовые ядра для набора энергий ТЛ. Глубинные распределения дозы в водном фантоме, рассчитанные с использованием полученных спектров и дозовых ядер, хорошо согласуются с результатами проведенных в работе измерений распределений дозы.

Выводы: Предложенная методика реконструкции действующих спектров тормозного излучения ЛУЭ является вполне адекватной. Средняя энергия спектра тормозных фотонов ускорителя Varian Trilogy, работающего в режиме 6МВ, изменяется в зависимости от размера полей от 1,71 до 1,43МэВ.

Ключевые слова: лучевая терапия, медицинские ускорители, тормозное излучение, глубинные дозовые распределения, реконструкция спектров фотонов

СПИСОК ЛИТЕРАТУРЫ

  1. Mohan R., Chui C., Lidofsky L. Energy and angular distributions of photons from medical linear accelerators // Med. Phys. 1985. Vol. 12. P. 592–597.
  2. Ahnesjo A., Saxner M., Trepp A. A pencil beam model for photon dose calculation // Med. Phys. 1992. Vol. 19. № 2. P. 263–273.
  3. Ulmer W., Harder D. Application of a triple Gaussian photon pencil beam model for photon beam treatment planning // Z. Med. Phys. 1995. Vol. 5. P. 25–30.
  4. Sheikh-Bagheria D., Rogers D. W. O. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code // Med. Phys. 2002. Vol. 29. № 3. P. 391–402.
  5. Ahnesjo A., Andreo P. Determination of effective bremsstrahlung spectra and electron contamination for photon dose calculations // Phys. Med. Biol. 1989. Vol. 34. № 10. P. 1451–1464.
  6. Rrimar M., Nicolic D., Krstonosic P. A simple method for bremsstrahlung spectra reconstruction from transmission measurements // Med. Phys. 2002. Vol. 29. № 6. P.932–938.
  7. Климанов В.А., Смирнов В.В., Журов В.Ю., Семенов Ю.В. Реконструкция эффективного спектра тормозного излучения по пространственным дозовым профилям и глубинному дозовому распределению // Мед. физика. 2011. № 2(50). С. 23–30.
  8. Климанов В.А., Моисеев А.Н., Могиленец Н.Н. Аналитическая аппроксимация дозового ядро тонкого луча фотонов со спектром терапевтического аппарата РОКУС // Мед. физика. 2015. № 2(66). 2015. С. 7–15.
  9. Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version // Med. Phys. 2000. Vol. 27. P. 485–498.
  10. Rogers D. W. O., Faddegon B. A., Ding G. X. et al. BEAM: A Monte Carlo code to simulate radiotherapy treatment units // Med. Phys. 1995. Vol. 22. P. 503–524.

Для цитирования: Климанов В.А., Галяутдинова Ж.Ж., Могиленец Н.Н., Смирнов В.В. Реконструкция действующего спектра тормозного излучения медицинских линейных ускорителей электронов по глубинным распределениям дозы в водном фантоме. 2017. Т. 62. № 5. С. 47-51. DOI: 10.12737/article_59f300494670a7.65219672

PDF (RUS) Полная версия статьи