Медицинская радиология и радиационная безопасность. 2024. Том 69. № 1

DOI:10.33266/1024-6177-2024-69-1-15-19

А.К. Чигасова1, 2, 3, М.В. Пустовалова1, 4, А.А. Осипов2,С.А. Корнева5,
П.С. Еремин6, Е.И. Яшкина1, 2, М.А. Игнатов1, 2, Ю.А. Федотов1, 2,
Н.Ю. Воробьева1, 2, А.Н. Осипов1, 2

ПОСТРАДИАЦИОННЫЕ ИЗМЕНЕНИЯ КОЛИЧЕСТВА ФОКУСОВ ФОСФОРИЛИРОВАННЫХ БЕЛКОВ H2AX И AТМ В МЕЗЕНХИМАЛЬНЫХ СТВОЛОВЫХ КЛЕТКАХ ЧЕЛОВЕКА, ОБЛУЧЕННЫХ РЕНТГЕНОВСКИМ ИЗЛУЧЕНИЕМ В МАЛЫХ ДОЗАХ

1 Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России, Москва

2 Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, Москва

3 Институт биохимической физики им. Н.М. Эмануэля РАН, Москва

4 Московский физико-технический институт (национальный исследовательский университет), Московская область, Долгопрудный 

5 Московский государственный университет им. М.В.Ломоносова, Москва

6 Национальный медицинский исследовательский центр реабилитации и курортологии Минздрава России, Москва

Контактное лицо: Наталья Юрьевна Воробьева, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

РЕФЕРАТ

Цель: Изучение закономерностей изменений количества фокусов фосфорилированных белков репарации двунитевых разрывов ДНК H2AX (γН2АХ) и AТМ (pAТМ) в культивируемых мезенхимальных стволовых клетках (МСК) человека через 1‒48 ч после воздействия рентгеновского излучения в дозах 40, 80, 160 и 250 мГр.

Материал и методы: В работе использовали первичную культуру МСК человека, полученную из коллекции ООО «БиолоТ» (Россия). Облучение клеток проводили на рентгеновской биологической установке РУБ РУСТ-М1 (Россия), оснащенной двумя рентгеновскими излучателями, при мощности дозы 40 мГр/мин, напряжении 100 кВ, токе трубки 0,8 мА, фильтре 1,5 мм Al, и температуре 4 °C. Для количественной оценки фокусов γН2АХ и pAТМ было проведено иммуноцитохимическое окрашивание с использованием антител к γН2АХ и pAТМ соответственно. Статистический анализ полученных данных проводился с использованием пакета статистических программ Statistica 8.0 (StatSoft). Для оценки значимости различий выборок использовали t-критерия Стьюдента.

Результаты: В ходе проведенных исследований было показано, что кинетики изменений количества фокусов γH2AX после облучения в дозах 160 и 250 мГр и малых (40‒80 мГр) дозах существенно отличаются. В отличие от существенного (на 50‒60 %) снижения количества фокусов γH2AX, наблюдаемого через 6 ч после облучения в дозах 160 и 250 мГр, после облучения в малых дозах значимого снижения фокусов γH2AX в эту временную точку не наблюдалось. Анализ солокализации фокусов γH2AX с фокусами pATM свидетельствует о том, что механизмы поддержания высокого количества фокусов γH2AX через 24‒48 ч после облучения в малых дозах являются АТМ независимыми. Выдвинута гипотеза, объясняющая феномен поддержания количества фокусов γН2AХ через 24‒48 ч после облучения в малых дозах репликативным стрессом, обусловленным стимуляцией пролиферации на фоне гиперпродукции свободных радикалов, в результате чего происходит дополнительное образование двунитевых разрывов ДНК и фосфолирирование Н2AХ киназой ATR.

Ключевые слова: мезенхимальные стволовые клетки, γH2AX, pAТМ, двунитевые разрывы ДНК, рентгеновское излучение, малые дозы

Для цитирования: Чигасова А.К., Пустовалова М.В., Осипов А.А., Корнева С.А., Еремин П.С., Яшкина Е.И., Игнатов М.А., Федотов Ю.А., Воробьева Н.Ю., Осипов А.Н. Пострадиационные изменения количества фокусов фосфорилированных белков h2ax и aтм в мезенхимальных стволовых клетках человека, облученных рентгеновским излучением в малых дозах // Медицинская радиология и радиационная безопасность. 2024. Т. 69. № 1. С. 15–19. DOI:10.33266/1024-6177-2024-69-1-15-19

 

Список литературы

1. Mastrolia I., Foppiani E.M., Murgia A., Candini O., Samarelli A.V., Grisendi G., et al. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem. Cells. Transl. Med. 2019;8;11:1135-1148. doi: 10.1002/sctm.19-0044.

2. Andrzejewska A., Lukomska B., Janowski M. Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem. Cells. 2019;37;7:855-864. doi: 10.1002/stem.3016.

3. Smolinska A., Bzinkowska A., Rybkowska P., Chodkowska M., Sarnowska A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem. Cells. Int. 2023;2023:1842958. doi: 10.1155/2023/1842958.

4. Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., et al. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering. 2001;7;2:211-228. doi: 10.1089/107632701300062859.

5. Oswald J., Boxberger S., Jorgensen B., Feldmann S., Ehninger G., Bornhauser M., et al. Mesenchymal Stem Cells Can Be Differentiated into Endothelial Cells in Vitro. Stem. Cells. 2004;22;3:377-84. doi: 10.1634/stemcells.22-3-377.

6. Пустовалова М.В., Грехова А.К., Осипов А.Н. Мезенхимальные стволовые клетки: эффекты воздействия ионизирующего излучения в малых дозах // Радиационная биология. Радиоэкология. 2018. Т.58, № 4. С. 352-362. doi: 10.1134/s086980311804015x. [Pustovalova M.V., Grekhova A.K., Osipov A.N. Mesenchymal Stem Cells: Effects of Exposure to Ionizing Radiation in Low Doses. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2018;58;4:352-362. doi: 10.1134/s086980311804015x (In Russ.)].

7. Bushmanov A., Vorobyeva N., Molodtsova D., Osipov A.N. Utilization of DNA Double-Strand Breaks for Biodosimetry of Ionizing Radiation Exposure. Environmental Advances. 2022;8. doi: 10.1016/j.envadv.2022.100207.

8. Osipov A., Chigasova A., Yashkina E., Ignatov M., Fedotov Y., Molodtsova D., et al. Residual Foci of DNA Damage Response Proteins in Relation to Cellular Senescence and Autophagy in X-Ray Irradiated Fibroblasts. Cells. 2023;12;8. doi: 10.3390/cells12081209.

9. Belov O., Chigasova A., Pustovalova M., Osipov A., Eremin P., Vorobyeva N., et al. Dose-Dependent Shift in Relative Contribution of Homologous Recombination to DNA Repair after Low-LET Ionizing Radiation Exposure: Empirical Evidence and Numerical Simulation. Curr. Issues Mol. Biol. 2023;45;9:7352-73. doi: 10.3390/cimb45090465.

10. Georgoulis A., Vorgias C., Chrousos G., Rogakou E. Genome Instability and γH2AX. International Journal of Molecular Sciences. 2017;18;9. doi: 10.3390/ijms18091979.

11. Burma S., Chen B.P., Murphy M., Kurimasa A., Chen D.J. ATM Phosphorylates Histone H2AX in Response to DNA Double-Strand Breaks. J. Biol. Chem. 2001;276;45:42462-7. doi: 10.1074/jbc.C100466200.

12. Stiff T., O’Driscoll M., Rief N., Iwabuchi K., Lobrich M., Jeggo P.A. ATM and DNA-PK Function Redundantly to Phosphorylate H2AX after Exposure to Ionizing Radiation. Cancer Res. 2004;64;7:2390-6. 

13. Zhou B.B., Elledge S.J. The DNA Damage Response: Putting Checkpoints in Perspective. Nature. 2000;408;6811:433-439. doi: 10.1038/35044005.

14. O’Driscoll M., Ruiz-Perez V.L., Woods C.G., Jeggo P.A., Goodship J.A. A Splicing Mutation Affecting Expression of Ataxia-Telangiectasia and Rad3-Related Protein (Atr) Results in Seckel Syndrome. Nature Genetics. 2003;33;4:497-501. doi: 10.1038/ng1129.

15. Reitsema T., Klokov D., Banath J.P., Olive P.L. DNA-PK Is Responsible for Enhanced Phosphorylation of Histone H2AX under Hypertonic Conditions. DNA Repair (Amst). 2005;4;10:1172-1181. doi: 10.1016/j.dnarep.2005.06.005.

16. Shibata A., Jeggo P.A. ATM’s Role in the Repair of DNA Double-Strand Breaks. Genes. 2021;12;9. doi: 10.3390/genes12091370.

17. Lee J.H., Paull T.T. Activation and Regulation of ATM Kinase Activity in Response to DNA Double-Strand Breaks. Oncogene. 2007;26;56:7741-7748. doi: 10.1038/sj.onc.1210872.

18. Kurz E.U., Lees-Miller S.P. DNA Damage-Induced Activation of ATM and ATM-Dependent Signaling Pathways. DNA Repair (Amst). 2004;3;8-9:889-900. doi: 10.1016/j.dnarep.2004.03.029.

19. Osipov A.N., Pustovalova M., Grekhova A., Eremin P., Vorobyova N., Pulin A., et al. Low Doses of X-Rays Induce Prolonged and ATM-Independent Persistence of GammaH2AX foci in Human Gingival Mesenchymal Stem Cells. Oncotarget. 2015;6;29:27275-87. doi: 10.18632/oncotarget.4739.

20. Грехова А.К., Еремин П.С., Осипов А.Н., Еремин И.И., Пустовалова М.В., Озеров И.В. и др. Замедленные процессы образования и деградации фокусов γН2ax в фибробластах кожи человека, подвергшихся воздействию рентгеновского излучения в малых дозах // Радиационная биология Радиоэкология. 2015;55(4):395-401. doi: 10.7868/s0869803115040037. [Grekhova A.K., Eremin P.S., Osipov A.N., Eremin I.I., Pustovalova M.V., Ozerov I.V., et al. Slow Processes of Formation and Degradation of γH2ax Foci in Human Skin Fibroblasts Exposed to Low-Dose X-Ray Radiation. Radiatsionnaya Biologiya. Radioekologiya = Radiation Biology. Radioecology. 2015;55;4:395-401. doi: 10.7868/s0869803115040037. (In Russ.)]. 

21. Biswas H., Makinwa Y., Zou Y. Novel Cellular Functions of ATR for Therapeutic Targeting: Embryogenesis to Tumorigenesis. International Journal of Molecular Sciences. 2023;24;14. doi: 10.3390/ijms241411684.

22. Suzuki K., Okada H., Yamauchi M., Oka Y., Kodama S., Watanabe M. Qualitative and Quantitative Analysis of Phosphorylated ATM Foci Induced by Low-Dose Ionizing Radiation. Radiat Res. 2006;165;5:499-504. doi: 10.1667/RR3542.1.

23. Large M., Reichert S., Hehlgans S., Fournier C., Rodel C., Rodel F. A Non-Linear Detection of Phospho-Histone H2AX in EA.hy926 Endothelial Cells Following Low-Dose X-Irradiation Is Modulated by Reactive Oxygen Species. Radiat Oncol. 2014;9:80. doi: 10.1186/1748-717X-9-80.

24. Baulch J.E., Craver B.M., Tran K.K., Yu L., Chmielewski N., Allen B.D., et al. Persistent Oxidative Stress in Human Neural Stem Cells Exposed to Low Fluences of Charged Particles. Redox Biology. 2015;5:24-32. doi: 10.1016/j.redox.2015.03.001.

25. Liang X., So Y.H., Cui J., Ma K., Xu X., Zhao Y., et al. The Low-Dose Ionizing Radiation Stimulates Cell Proliferation Via Activation of the MAPK/ERK Pathway in Rat Cultured Mesenchymal Stem Cells. Journal of Radiation Research. 2011;52;3:380-386. 

26. Petermann E., Helleday T. Pathways of Mammalian Replication Fork Restart. Nature Reviews Molecular Cell Biology. 2010;11;10:683-687. doi: 10.1038/nrm2974.

 

 PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследования выполнены при поддержке РНФ (проект № 23-14-00078).

Участие авторов. Cтатья подготовлена с равным участием авторов.

Поступила: 20.10.2023. Принята к публикации: 27.11.2023.