Medical Radiology and Radiation Safety. 2024. Vol. 69. № 3

DOI:10.33266/1024-6177-2024-69-3-26-34

L.A. Romodin1, E.I. Yashkina1, A.A. Moskovskij2

Fluorimetric Evaluation of the Effect of Riboxin, Copper Chlorophyllin, Trolox and the Soluble form of Indralin on the Growth Properties of A549 Cells in Culture

1 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2 Russian Biotechnological University, Moscow, Russia

Contact person: L.A. Romodin, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

ABSTRACT

Currently, cell cultures are most often used as an experimental model system in biological research. However, to correctly plan studies using this model system, many aspects must be taken into account. Thus, to be able to correctly assess the effect of radioprotective drugs on cells, it is first necessary to study the effect of these substances on the properties of cells in culture. And the main property for work using plate readers is the ability of cells to adhere to the bottom of the plate and the rate of cell proliferation. This work is devoted to the study of human riboxin (inosine), copper chlorophyllin, trolox and indralin, the growth properties of cells in a culture based on the A549 cell line - human lung adenocarcinoma. Riboxin, chlorophyllin and trolox are promising compounds that make it possible to study their radioprotective properties. Indralin is a reference classic radioprotector. This process used a water-soluble form containing tartaric acid to allow indralin to dissolve in water. The experiment consisted of incubating A549 cells for 24 hours in a solution of riboxin (inosine), copper chlorophyllin, Trolox or tartaric acid at a concentration of 2 mM or in a mixture of 2 mM tartaric acid and 1.9 mM indralin, followed by assessment of the cell content in the samples compared to cells incubated without the addition of these substances, based on the fluorescence of the Hoechst-33342 dye. An additional experiment with chlorophyllin consisted in incubating cells with chlorophyllin already attached to the bottom of the tablet in the concentration range of 50–500 μM for 2.5 hours, followed by an assessment of the content of the remaining cells in the tablet. All studied substances statistically significantly reduced the cell content in the samples compared to the control. The greatest decrease in cell content was observed in the sample with chlorophyllin, and the least – with riboxin. As a result of additional experience in incubating already attached cells in chlorophyllin solution with concentrations of 50–500 μM, it was shown that this substance dose-dependently inhibits the adhesive properties of cells of the A549 line. At the same time, chlorophyllin already at a concentration of 50 μM statistically significantly reduced the cell content in the sample after washing the wells of the tablet compared with the control sample.

The decrease in cell content in the sample containing a mixture of indralin and tartaric acid was statistically significantly more pronounced than that caused by incubation in a solution of tartaric acid alone. That is, the recognized radioprotector indralin demonstrated a pronounced inhibition of the growth properties of the A549 cell line. Based on the information obtained, we can conclude that when planning future studies of the substances studied in this work on a cell culture model, it is necessary to take into account the fact that they inhibit the growth of the cell culture.

Keywords: cell culture, A549, riboxin, copper chlorophyllin, trolox, indralin, tartaric acid, influence estimation

For citation: Romodin LA, Yashkina EI, Moskovskij AA. Fluorimetric Evaluation of the Effect of Riboxin, Copper Chlorophyllin, Trolox and the Soluble form of Indralin on the Growth Properties of A549 Cells in Culture. Medical Radiology and Radiation Safety. 2024;69(3):26–34. (In Russian). DOI:10.33266/1024-6177-2024-69-3-26-34

 

References

1. Lei G., Zhang Y., Koppula P., Liu X., Zhang J., Lin S.H., Ajani J.A., Xiao Q., Liao Z., Wang H., Gan B. The Role of Ferroptosis in Ionizing Radiation-Induced Cell Death and Tumor Suppression. Cell Research. 2020;30:146–162. doi: 10.1038/s41422-019-0263-3.

2. Raitanen J., Barta B., Hacker M., Georg D., Balber T., Mitterhauser M. Comparison of Radiation Response between 2D and 3D Cell Culture Models of Different Human Cancer Cell Lines. Cells. 2023;12;3:360. doi: 10.3390/cells12030360.

3. Jooyan N., Mortazavi S.M.J., Goliaei B., Faraji-Dana R. Indirect Effects of Interference of Two Emerging Environmental Contaminants on Cell Health: Radiofrequency Radiation and Gold Nanoparticles. Chemosphere. 2024;349:140942. doi: 10.1016/j.chemosphere.2023.140942.

4. Pustovalova M., Astrelina capital Te C., Grekhova A., Vorobyeva N., Tsvetkova A., Blokhina T., Nikitina V., Suchkova Y., Usupzhanova D., Brunchukov V., Kobzeva I., Karaseva capital Te C., Ozerov I.V., Samoylov A., Bushmanov A., Leonov S., Izumchenko E., Zhavoronkov A., Klokov D., Osipov A.N. Residual GammaH2AX Foci Induced by Low Dose X-Ray Radiation in Bone Marrow Mesenchymal Stem Cells Do Not Cause Accelerated Senescence in the Progeny of Irradiated Cells. Aging. 2017;9;11:2397–2410. doi: 10.18632/aging.101327.

5. Romodin L.A., Yashkina E.I., Moskovskiy A.A. Fluorimetric Evaluation of the Effect of Malic, Succinic and Ascorbic Acids on the Growth Properties of A549 Cells in Culture. Medical Radiology and Radiation Safety. 2024;69;1:28–32 (In Russ.). doi: 10.33266/1024-6177-2024-69-1-28-32.

6. Sycheva L.P., Rozhdestvenskiy L.M., Lisina N.I., Shlyakova T.G., Zorin V.V. Antimutagenic Activity and Hepatoprotective Effect of Anti-Radiation Drugs. Medical Genetics. 2020;19;9(218):81–82 (In Russ.). doi: 10.25557/2073-7998.2020.09.81-82.

7. Sycheva L.P., Lisina N.I., Shchegoleva R.A., Rozhdestvenskiy L.M. Antimutagenic Effect of Anti-Radiation Drugs in an Experiment on Mice. Radiacionnaya Biologiya. Radioekologiya. 2019;59;4:388–393. (In Russ.). doi: 10.1134/S086980311904012X.

8. Gudkov S.V., Gudkova O.Yu., Shtarkman I.N., Gapeev A.B., Chemeris N.K., Bruskov V.I. Guanosine and Inosine as Natural Geneprotectors for Mice Blood Cells Expo Sed to X-rays. Radiacionnaya Biologiya. Radioekologiya. 2006;46;6:713–718 (In Russ.). 

9. Popova N.R., Gudkov S.V., Bruskov V.I. Natural Purine Compounds as Radioprotective Agents. Radiacionnaya Biologiya. Radioekologiya. 2014;54;1:38–49 (In Russ.). doi: 10.7868/S0869803114010135.

10. Hou B., Xu Z.W., Yang C.W., Gao Y., Zhao S.F., Zhang C.G. Protective Effects of Inosine on Mice Subjected to Lethal Total-Body Ionizing Irradiation. Journal of Radiation Research. 2007;48;1:57–62. doi: 10.1269/jrr.06067.

11. Blanco J.M., Caamano O., Fernandez F., Rodriguez-Borges J.E., Balzarini J., de Clercq E. Carbocyclic Analogues of Nucleosides from bis-(Hydroxymethyl)-Cyclopentane: Synthesis, Antiviral and Cytostatic Activities of Adenosine, Inosine and Uridine Analogues. Chemical & Pharmaceutical Bulletin. 2003;51;9:1060–1063. doi: 10.1248/cpb.51.1060.

12. Zerniy E.Yu., Golovastova M.O., Baksheeva V.E., Kabanova E.I., Ishutina I.E., Gancharova O.S., Gusev A.E., Savchenko M.S., Loboda A.P., Sotnikova L.F., Zamyatnin A.A., Philippov P.P., Senin I.I. Alterations in Tear Biochemistry Associated with Chronic Dry Eye Syndrome in Postanesthetic Period. Biohimiya. 2017;82;1:137–148. (In Russ.).

13. McClain D.E., Kalinich J.F., Ramakrishnan N. Trolox Inhibits Apoptosis in Irradiated MOLT-4 Lymphocytes. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 1995;9;13:1345–1354. doi: 10.1096/fasebj.9.13.7557025.

14. Jiang S.J., Xiao X., Li J., Mu Y. Lycium Barbarum Polysaccharide-Glycoprotein Ameliorates Ionizing Radiation-Induced Epithelial Injury by Regulating Oxidative Stress and Ferroptosis Via the Nrf2 Pathway. Free Radical Biology & Medicine. 2023;204:84–94. doi: 10.1016/j.freeradbiomed.2023.04.020.

15. Sangsuwan T., Pour Khavari A., Blomberg E., Romell T., Godoy P., Harms-Ringdahl M., Haghdoost S. Oxidative Stress Levels and DNA Repair Kinetics in Senescent Primary Human Fibroblasts Exposed to Chronic Low Dose Rate of Ionizing Radiation. Frontiers in Bioscience. 2023;28;11:296. doi: 10.31083/j.fbl2811296.

16. Ding S.S., Sun P., Zhang Z., Liu X., Tian H., Huo Y.W., Wang L.R., Han Y., Xing J.P. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage. Chinese Medical Journal. 2018;131;4:402–412. doi: 10.4103/0366-6999.225045.

17. Zakharova O.D., Frolova T.S., Yushkova Y.V., Chernyak E.I., Pokrovskiy A.G., Pokrovskiy M.A., Morozov S.V., Sinitsina O.I., Grigor’ev I.A., Nevinskiy G.A. Antioxidant and Antitumor Activity of Trolox, Trolox Succinate, and Alpha-Tocopheryl Succinate Conjugates with Nitroxides. European Journal of Medicinal Chemistry. 2016;122:127–137. doi: 10.1016/j.ejmech.2016.05.051.

18. Pozdeev A.V., Lysenko N.P. Increasing the Radiation Resistance of the Mammalian Body when Using Chlorophyll Preparations in Conditions of Radioactive Environmental Pollution. Izvestiya Mezhdunarodnoy Akademii Agrarnogo Obrazovaniya. 2018;42;2:60–62 (In Russ.).

19. Pozdeev A.V., Gugalo V.P. The Effect of Chlorophyll Preparation on the Content of Malondialdehyde in Radiation Pathology. Bulletin of the Kursk State Agricultural Academy. 2012;2:107–109 (In Russ.). 

20. Kumar S.S., Shankar B., Sainis K.B. Effect of Chlorophyllin against Oxidative Stress in Splenic Lymphocytes in Vitro and in Vivo. Biochimica et Biophysica Acta. 2004;1672;2:100–111. doi: 10.1016/j.bbagen.2004.03.002.

21. Geric M., Gajski G., Mihaljevic B., Miljanic S., Domijan A.M., Garaj-Vrhovac V. Radioprotective Properties of Food Colorant Sodium Copper Chlorophyllin on Human Peripheral Blood Cells in Vitro. Mutation Research. Genetic Toxicology and Environmental Mutagenesis. 2019;845:403027. doi: 10.1016/j.mrgentox.2019.02.008.

22. Morales-Ramirez P., Mendiola-Cruz M.T. In vivo Radioprotective Effect of Chlorophyllin on Sister Chromatid Exchange Induction in Murine Spermatogonial Cells. Mutation Research. 1995;344;1-2:73–78. doi: 10.1016/0165-1218(95)90041-1.

23. Morales-Ramirez P., Garcia-Rodriguez M.C. In vivo Effect Of Chlorophyllin On Gamma-Ray-Induced Sister Chromatid Exchange in Murine Bone Marrow Cells. Mutation Research. 1994;320;4:329–334. doi: 10.1016/0165-1218(94)90085-x.

24. Abraham S.K., Sarma L., Kesavan P.C. Role of Chlorophyllin as an in Vivo Anticlastogen: Protection Against Gamma-Radiation and Chemical Clastogens. Mutation Research. 1994. Vol. 322, № 3. – P.: 209–212. doi: 10.1016/0165-1218(94)90008-6.

25. Zimmering S., Olvera O., Hernandez M.E., Cruces M.P., Arceo C., Pimental E. Evidence for a Radioprotective Effect of Chlorophyllin in Drosophila. Mutation Research. 1990;245;1:47–49. doi: 10.1016/0165-7992(90)90024-e.

26. Romodin L.A., Lysenko N.P. The Radioprotective Effect of Chlorophyll-Based Drugs. Biophysics. 2022;67;1:78–84. doi: 10.1134/S0006350922010158.

27. Chiu L.C., Kong C.K., Ooi V.E. The Chlorophyllin-Induced Cell Cycle Arrest and Apoptosis in Human Breast Cancer MCF-7 Cells is Associated with ERK Deactivation and Cyclin D1 Depletion. International Journal of Molecular Medicine. 2005;16;4:735–740.

28. Chimploy K., Diaz G.D., Li Q., Carter O., Dashwood W.M., Mathews C.K., Williams D.E., Bailey G.S., Dashwood R.H. E2F4 and Ribonucleotide Reductase Mediate S-phase Arrest in Colon Cancer Cells Treated with Chlorophyllin. International Journal of Cancer. 2009;125;9:2086–2094. doi: 10.1002/ijc.24559.

29. Thiyagarajan P., Kavitha K., Thautam A., Dixit M., Nagini S. Dietary Chlorophyllin Abrogates TGFbeta Signaling to Modulate the Hallmark Capabilities of Cancer in an Animal Model of Forestomach Carcinogenesis. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35;7:6725–6737. doi: 10.1007/s13277-014-1849-5.

30. Das J., Samadder A., Mondal J., Abraham S.K., Khuda-Bukhsh A.R. Nano-Encapsulated Chlorophyllin Significantly Delays Progression OF Lung Cancer both in in Vitro and in Vivo Models through Activation of Mitochondrial Signaling Cascades and Drug-DNA Interaction. Environmental Toxicology and Pharmacology. 2016;46:147–157. doi: 10.1016/j.etap.2016.07.006.

31. Sun S., Zhang Y., Xu W., Yang R., Guo J., Guan S., Ma Q., Ma K., Xu J. Chlorophyllin Inhibits Mammalian Thioredoxin Reductase 1 and Triggers Cancer Cell Death. Antioxidants. 2021;10;11:1733. doi: 10.3390/antiox10111733.

32. Il’in L.A., Rudnyy N.M., Suvorov N.N., Chernov G.A., Antipov V.V., Vasin M.V., Davydov B.I., Mikhaylov P.P. Indralin – Radioprotektor Ekstrennogo Deystviya. Protivoluchevyye Svoystva, Farmakologiya, Mekhanizm Deystviya, Klinika = Indralin is a Emergency Radioprotector. Anti-Radiation Properties, Pharmacology, Mechanism of Action, Clinic. Moscow Publ., 1994. 436 p. (In Russ.).

33. Vasin M.V. B-190 (Indralin) in the Light of History of Formation of Ideas of the Mechanism of Action of Radioprotectors. Radiacionnaya Biologiya. Radioekologiya. 2020;60;4:378–395 (In Russ.). doi: 10.31857/S0869803120040128.

34. Romodin L.A., Nikitenko O.V., Bychkova T.M., Zrilova Yu.A., Rodionova E.D., Bocharov D.A. Radioprotective Properties of Riboxin (Inosine) and Indralin under External Irradiation. Bulletin of Experimental Biology and Medicine. 2023;176;11:585–588 (In Russ.). doi: 10.47056/0365-9615-2023-176-11-585-588

35. Legeza V.I., Grebenyuk A.N., Zargarova N.I. To a Question on Efficiency of Application of Radioprotectors with Various Mechanisms of Action in Injures Typical for Radiation Accidents (Experimental Research). Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2013;1:42–47 (In Russ.). 

36. Grebenyuk A.N., Myasnikov V.A., Zatsepin V.V., Aksenova N.V., Bykov V.N., Sidorov D.A. Comparative Study of the Effectiveness of Heparin, Interleukin-1β, Β-Estradiol and Indometofen as Radioprotectors in Acute Irradiation. Bulletin of the Russian Military Medical Academy. 2011;4(36):101–104 (In Russ.).

37. Filimonova M.V., Shevchenko L.I., Makarchuk V.M., Chesnakova E.A., Izmest’eva O.S., Korneeva T.S., Filimonov A.S. Radioprotective Properties of NO-Synthase Inhibitor T1023: I. Indicators of Radioprotective Activity and Interaction with Other Radioprotectors. Radiacionnaya Biologiya. Radioekologiya. 2015;55;3:250–259 (In Russ.). doi: 10.7868/S0869803115030042.

38. Zhang Y., Huang Q., Xu Q., Jia C., Xia Y. Pimavanserin Tartrate Induces Apoptosis and Cytoprotective Autophagy and Synergizes with Chemotherapy on Triple Negative Breast Cancer. Biomedicine & Pharmacotherapy. 2023;168:115665. doi: 10.1016/j.biopha.2023.115665.

39. Lecureur V., Le Thiec A., Le Meur A., Amiot L., Drenou B., Bernard M., Lamy T., Fauchet R., Fardel O. Potassium Antimonyl Tartrate Induces Caspase- and Reactive Oxygen Species-Dependent Apoptosis in Lymphoid Tumoral Cells. British Journal of Haematology. 2002;119;3:608–615. doi: 10.1046/j.1365-2141.2002.03863.x.

40. Lecureur V., Lagadic-Gossmann D., Fardel O. Potassium Antimonyl Tartrate Induces Reactive Oxygen Species-Related Apoptosis in Human Myeloid Leukemic HL60 Cells. International Journal of Oncology. 2002;20;5:1071–1076.

41. Chang S.H., Lee A.Y., Yu K.N., Park J., Kim K.P., Cho M.H. Dihydroergotamine Tartrate Induces Lung Cancer Cell Death through Apoptosis and Mitophagy. Chemotherapy. 2016;61;6:304–312. doi: 10.1159/000445044.

42. Elmetwalli A., Hashish S.M., Hassan M.G., El-Magd M.A., El-Naggar S.A., Tolba A.M., Salama A.F. Modulation of the Oxidative Damage, Inflammation, and Apoptosis-Related Genes by Dicinnamoyl-L-tartaric Acid in Liver Cancer. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2023;396;11:3087–3099. doi: 10.1007/s00210-023-02511-8.

43. Fuchs H., Jahn K., Hu X., Meister R., Binter M., Framme C. Breaking a Dogma: High-Throughput Live-Cell Imaging in Real-Time with Hoechst 33342. Advanced Healthcare Materials. 2023;12;20:e2300230. doi: 10.1002/adhm.202300230.

44. Cordeiro M.M., Filipe H.A.L., Santos P.D., Samelo J., Ramalho J.P.P., Loura L.M.S., Moreno M.J. Interaction of Hoechst 33342 with POPC Membranes at Different pH Values. Molecules. 2023;28;15:5640. doi: 10.3390/molecules28155640.

45. Vasin M.V., Ushakov I.B. Potential Ways of Increase in Bogy Resistance to Damaging Actionof Ionizing Radiation with the Aids of Radiomitigators. Uspekhi Sovremennoy Biologii. 2019;139;3:235–253 (In Russ.). doi: 10.1134/S0042132419030098.

46. Srinivasan S., Torres A.G., Ribas de Pouplana L. Inosine in Biology and Disease. Genes. 2021;12;4:600. doi: 10.3390/genes12040600.

47. Zhuravlyov A.I., Zubkova S.M. Antioksidanty. Svobodnoradikal’naya Patologiya, Starenie = Antioxidants. Free Radical Pathology, Aging. Second edition, revised and expanded. Moscow, Belye Al’vy Publ., 2014. 304 p. (In Russ.).

48. Zhuravlyov A.I. Kvantovaya Biofizika Zhivotnykh I Cheloveka: Svechenie Zhivykh Tkaney = Quantum Biophysics of Animals and Humans: The Glow of Living Tissues. Moscow, BINOM. Laboratoriya Znaniy Publ., 2014. 400 p. (In Russ.).

49. Hutchison J.C., Evans J., Edgell T.A., Nie G., Gardner D.K., Salamonsen L.A. Detrimental Actions of Obesity-Associated Advanced Glycation End-Products on Endometrial Epithelial Cell Proliferation are Alleviated by Antioxidants. Reproductive Biomedicine Online. 2023;47;1:35–50. doi: 10.1016/j.rbmo.2023.01.021.

50. Raj M.H., Abd Elmageed Z.Y., Zhou J., Gaur R.L., Nguyen L., Azam G.A., Braley P., Rao P.N., Fathi I.M., Ouhtit A. Synergistic Action of Dietary Phyto-Antioxidants on Survival and Proliferation of Ovarian Cancer Cells. Gynecologic Oncology. 2008;110;3:432–438. doi: 10.1016/j.ygyno.2008.05.001.

51. Asay S., Graham A., Hollingsworth S., Barnes B., Oblad R.V., Michaelis D.J., Kenealey J.D. Gamma-Tocotrienol and Alpha-Tocopherol Ether Acetate Enhance Docetaxel Activity in Drug-Resistant Prostate Cancer Cells. Molecules. 2020;25;2:398. doi: 10.3390/molecules25020398.

52. Liu K.Y., Wang Q., Nakatsu C.H., Jones-Hall Y., Jiang Q. Combining Gamma-Tocopherol and Aspirin Synergistically Suppresses Colitis-Associated Colon Tumorigenesis and Modulates the Gut Microbiota in Mice, and Inhibits the Growth of Human Colon Cancer Cells. European Journal of Pharmacology. 2023;946:175656. doi: 10.1016/j.ejphar.2023.175656.

53. Ardelt B., Kunicki J., Traganos F., Darzynkiewicz Z. Chlorophyllin Protects Cells from the Cytostatic and Cytotoxic Effects of Quinacrine Mustard but Not of Nitrogen Mustard. International Journal of Oncology. 2001;18;4:849–853. doi: 10.3892/ijo.18.4.849.

54. Kouvaris J.R., Kouloulias V.E., Vlahos L.J. Amifostine: the First Selective-Target and Broad-Spectrum Radioprotector. The Oncologist. 2007;12;6:738–747. doi: 10.1634/theoncologist.12-6-738.

55. Buzgan N.G., Semenenko O.F., Dorosevich A.E. Influence of Acetylcholine and Adrenergic Receptors on Development and Progression of Non-Small Cell Lung Cancer. Voprosy Onkologii. 2016;62;5:694–700 (In Russ.). 

56. Fatyukhina O.E., Kolokol’tsova T.D., Troshkova G.P. Safety Assessment of the Laser-Induced Fluorescence Method Based on a Human Diploid Cell Culture Model. Kletochnyye Tekhnologii v Biologii i Meditsine. 2007;4:203–206 (In Russ.). 

57. Povolyaeva O.S., Chadaeva A.A., Lunitsin A.V., Yurkov S.G. Dwarf bat’s (Pipistrellus Pipistrellus) Lung Diploid Cell Strains and their Permissivity to Orbiviruses (Reoviridae: Orbivirus) – Pathogens of Vector-Borne Animal Diseases. Problems of Virusology. 2022;67;3:227–236 (In Russ.). doi: 10.36233/0507-4088-114.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The research was carried out at the expense of a grant from the Russian Science Foundation No. 23-24-00383, https://rscf.ru/project/23-24-00383 /.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.01.2024. Accepted for publication: 27.02.2024.