Medical Radiology and Radiation Safety. 2025. Vol. 70. № 3

DOI:10.33266/1024-6177-2025-70-3-54-69

V.I. Burmistrov1, E.I. Matkevich2, I.V. Ivanov1, 3

Analysis of the Radiation Situation in Aviation Flights under Conditions of Solar Proton Events

1 I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

2 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

3 N.F. Izmerov Research Institute of Occupational Medicine, Moscow, Russia

Contact person: I.V. Ivanov, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

Abstract

With a general analysis of the levels of ionizing radiation characteristic of outer space and causing radiation hazard factors for astronauts, the issues of assessing the radiation situation in air travel also remain relevant. The purpose of the study was to analyze the types and characteristics of ionizing radiation in airspace up to heights of 20 km above the Ground and possible radiation doses to flight personnel during flights under these conditions. The composition of ionizing radiation and the energy characteristics of proton events are analyzed. The radiation dose rates are estimated depending on the altitude and geographical latitude of the flight. To minimize the exposure of flight personnel and radiation risks, it is important to systematically take into account the forecast of solar activity, altitude and latitude of flight, control the total flight time per year, radiation protection conditions and other factors.

Keywords: aviation flights, flight personnel, civil aviation, radiation situation, solar activity, proton events, radiation doses, dosimetry, anti-radiation protection

For citation: Burmistrov VI, Matkevich EI, Ivanov IV. Analysis of the Radiation Situation in Aviation Flights under Conditions of Solar Proton Events. Medical Radiology and Radiation Safety. 2025;70(3):54–69. (In Russian). DOI:10.33266/1024-6177-2025-70-3-54-69

 

References

1. Ushakov I.B., Zuyev V.G., Abramov M.M., Soldatov S.K., Galkin A.A., Chernov Yu.N., Popov V.I. Radiatsionnyy Risk v Aviatsionnykh Poletakh = Radiation Risk in Aviation Flights. Moscow-Voronezh, Istoki Publ., 2001. 44 p. (In Russ.).

2. Evaluation of the Cosmic Radiation Exposure of Aircraft Crew. A Background to Aircrew Dose Evaluation with Results Reported within the EC Contract FIGM-CT-2000-00068 (DOSMAX), Work Package 6. 2000. URL: https://cordis.europa.eu/docs/projects/files/FIGM/FIGM-CT-2000-00068/75331981-6_en.pdf

3. Dosimetry of Aircrew Exposure to Radiation During Solar Maximum (DOSMAX). Final Report. Project Summary. Appendix 2. Contract Number: FIGM-CT-2000-00068. 2004. URL: https://cordis.europa.eu/docs/projects/files/FIGM/FIGM-CT-2000-00068/fp5-euratom_dosmax_projsum_en.pdf

4. Radiation Protection 140. Cosmic Radiation Exposure of Aircraft Crew. Compilation of Measured and Calculated Data. Final Report of EURADOS WG 5 to the Group of Experts Established under Article 31 of the Euratom Treaty. European Commission, Luxembourg, Office for Official Publications of the European Communities, 2004. 271 p.

5. Morozova M.A., Lapshin V.B., Dorenskiy S.V., Syroyeshkin A.V. Dosimetry for Passenger Air Service. Geliogeofizicheskiye Issledovaniya = Heliogeophysical Research. 2014;10:45-92 (In Russ.).

6. Copeland K., Friedberg W. Ionizing Radiation and Radiation Safety in Aerospace Environments. Final Report NoDOT/FAA/AM-21/8 Office of Aerospace Medicine. Washington, DC, Civil Aerospace Medical Institute FAA. 2021. 57 p.  URL: https://www.faa.gov/sites/faa.gov/files/data_research/research/med_humanfacs/aeromedical/202108.pdf

 7. Beck P. Overview of Research on Aircraft Crew Dosimetry during the Last Solar Cycle. Radiation Protection Dosimetry. 2009;136;4:244-250. doi: 10.1093/rpd/ncp158

8. Maurchev E.A., Balabin Yu.V. Model Complex for Studying Cosmic Rays RUSCOSMIC. Solnechno-Zemnaya Fizika = Solar-Terrestrial Physics. 2016;2;4:3-8 (In Russ.). doi: 10.12737/21289. 

9. Maurchev Ye.A., Mikhalko Ye.A., Balabin Yu.V., Germanenko A.V., Gvozdevskiy B.B. Estimated Equivalent Radiation Dose at Different Altitudes in Earth’s Atmosphere. Solnechno-Zemnaya Fizika = Solar-Terrestrial Physics. 2022;8;3:27-31 (In Russ.). doi: 10.12737/stp-83202204 

10. Maurchev Ye.A., Germanenko A.V., Balabin YU.V., Gvozdevskiy B.B. Estimation of the Equivalent Dose of Radiation in Real Time Based on Goes Satellite Data. Trudy Kol’skogo Nauchnogo Tsentra RAN. Seriya: Yestestvennyye i Gumanitarnyye Nauki = Proceedings of the Kola Science Center of the Russian Academy of Sciences. Series: Natural Sciences and Humanities. 2023;2;2:13-18 (In Russ.). doi: 10.37614/2949-1185.2023.2.2.002 

11.Kalmykov N.N., Kulikov G.V., Roganova T.M. Galactic Cosmic Rays. Model’ Kosmosa = Model of Space. Vol. 1. Ed. M.I. Panasyuk. Moscow, Knizhnyy Dom Universitet Publ., 2007. P. 62-95 (In Russ.).

12. Bezrodnykh I.P., Morozova Ye.I., Petrukovich A.A., Semonov V.T. Evaluation of Optimal Parameters of Screens for Protection of Electronic Systems of Spacecraft from Ionizing Radiation. Voprosy Elektromekhaniki = Questions of Electromechanics. 2012;131;6:15-18 (In Russ.).

13. Bezrodnykh I.P. Faktory Kosmicheskogo Prostranstva, Vliyayushchiye na Issledovaniye i Osvoyeniye Luny = Space Factors Influencing the Exploration and Development of the Moon. Moscow, IKI RAN Publ., 2014. 39 p. URL: https://disk.yandex.ru/i/s1X7uZZTHMqeAQ (In Russ.).

14. Novikov L.S. Kosmicheskoye Materialovedeniye = Space Materials Science. Moscow, Maks Press Publ., 2014. 448p. (In Russ.).

15. Maurchev E.A., Shlyk N.S., Dmitriev A.V., Abunina M.A., Didenko K.A., Abunin A.A., Belov A.V. Comparison of Atmospheric Ionization for Solar Proton Events of the Last Three Solar Cycles. Atmosphere. 2024;15;2:151. doi: 10.3390/atmos15020151

16. Belov A.V., Kurt V.G. Solar Cosmic Rays. Model’ Kosmosa = Model of Space. Vol. 1. Ed. M.I. Panasyuk. Moscow, Knizhnyy Dom Universitet Publ., 2007. P. 293-313 (In Russ.).

17. Maurchev Ye.A. Software Package RUSCOSMICS in Problems of Cosmic Rays Passage through the Earth’s Atmosphere. Trudy Kol’skogo Nauchnogo Tsentra RAN = Transactions of the Kola Science Centre of RAS. 2017;8;7-3:10-16 (In Russ.). EDN ZXPTKR 

18 Kirillov A.S., Belakhovsky V.B., Maurchev E.A., Balabin Y.V., Germanenko A.V., Gvozdevsky B.B. Vibrational Kinetics of NO and N2 in the Earth’s Middle Atmosphere during GLE69 on 20 January 2005. J. Geophys. Res. Atmos. 2003;128:e2023JD038600.

19. Jackman C.H., Deland M.T., Labow G.J., Fleming E.L., Weisenstein D.K., Ko M.K.W., Sinnhuber M., Anderson J., Russell J.M. The Influence of the Several very Large Solar Proton Events in Years 2000–2003 on the Neutral Middle Atmosphere. Advances in Space Research. 2005;35;3:445-450. doi: 10.1016/j.asr.2004.09.006

20. Funke B., Baumgaertner A., Calisto M., Egorova T., Jackman C., Kieser J., Krivolutsky A., López-Puertas M., Marsh D., Reddmann T., Rozanov E., Päivärinta S-M., Sinnhuber M., Stiller G., Verronen P., Versick S., Von T., Vyushkova T., Wieters N., Wissing Jan. Composition Changes after the «Halloween» Solar Proton Event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) Model Versus MIPAS Data Intercomparison Study. Atmos. Chem. Phys. 2011;11;17:9089-9139. doi: 10.5194/acpd-11-9407-2011

21. Vashenyuk E.V., Balabin Yu.V., Gvozdevsky B.B. Features of Relativistic Solar Proton Spectra Derived from Ground Level Enhancement Events (GLE) Modeling. Astrophys. Space Sci. Trans. 2011;7;4:459–463. doi: 10.5194/astra-7-459-2011

22. Bütikofer R., Flückiger E.O., Desorgher L., Moser M.R. The Extreme Solar Cosmic Ray Particle Event on 20 January 2005 and its Influence on the Radiation Dose Rate at Aircraft Altitude. Sci Total Environ. 2008;391;2-3:177-83. doi: 10.1016/j.scitotenv.2007.10.021

23. Poje M, Vuković B, Radolić V, Miklavčić I, Planinić J. Neutron Radiation Measurements on Several International Flights. Health Phys. 2015;108;3:344-50. doi: 10.1097/HP.0000000000000192

24. Dorenskiy S.V., Minligareyev. V.T., Syroyeshkin A.V. Determination of the Total Equivalent Dose Rate Received by Passengers and Crew Members during Air Travel. Scientific Session of NRNU MEPhI-2015. Abstracts of Reports. Vol.1. Moscow, February 16-20, 2015. Moscow, Natsional’nyy Issledovatel’skiy Yadernyy Universitet «MIFI» Publ., 2015. P. 176 (In Russ.).

25. Ryabeva Ye.V., Idalov V.A., Minligareyev V.T., Kravchenok V.L. Monitoring the Dose and Spectrum of Neutrons at Air Travel Altitudes. Geliogeofizicheskiye Issledovaniya = Heliogeophysical Research. 2020;25:37–44 (In Russ.).

26. Montagne C., Donne J.P., Pelcot D., Nguyen V.D., Bouisset P., Kerlau G. In Flight Radiation Measurements on Board French Airliners. Radiation Protection Dosimetry, 1993;48;1:79-83. doi: 10.1093/oxfordjournals.rpd.a081847

27. Reitz G. Radiation Environment in the Stratosphere. Radiation Protection Dosimetry. 1993;48;1;5-20. doi: 10.1093/oxfordjournals.rpd.a081837

28. Yerkhov V.I. Kontrol’ Urovney Ioniziruyushchego Izlucheniya v Nizhnikh Sloyakh Atmosfery = Monitoring Levels of Ionizing Radiation in the Lower Layers of the Atmosphere. Abstract Candidate Thesis (Phys). Moscow, Institut Prikladnoy Geofiziki Publ., 1994. 17 p. (In Russ.). URL: https://viewer.rsl.ru/ru/rsl01000042736?page=1&rotate=0&theme=white

29. Shafirkin A.V., Grigor’yev Yu.G., Nikitina V.N. Risk of Remote Consequences of Chronic Exposure to Ionizing and Non-Ionizing Radiation in Relation to Hygienic Standardization. Aviakosmicheskaya i Ekologicheskaya Meditsina = Aerospace and Environmental Medicine. 2004;38;1:56-62 (In Russ.).

30. Kliniko-Funktsional’naya Diagnostika, Profilaktika i Reabilitatsiya Professional’no Obuslovlennykh Narusheniy i Subklinicheskikh Form Zabolevaniy u Letnogo Sostava = Clinical and Functional Diagnostics, Prevention and Rehabilitation of Professionally Conditioned Disorders and Subclinical Forms of Diseases in Flight Personnel Practical Guide to Aviation Clinical Medicine. Ed. R.A.Vartbaronov. Moscow, APR Publ., 2011. 528 p. (In Russ.).

31. Levchuk I.P., Borshchev A.N., Afanas’yev R.V., Dellalov N.N., Afanas’yev S.V., Rylin Yu.V.  Radiation Risk as a Professional Factor in the Work of Civil Aviation Crews. Tverskoy Meditsinskiy Zhurnal = Tver Medical Journal. 2020;6:14-19 (In Russ.).

32. Ushakov I.B., Fedorov V.P. Radiation Risks of Helicopter Pilots during the Liquidation of the Consequences of the Accident at the Chernobyl Nuclear Power Plant: Early and Late Health Disorders. Meditsina Katastrof = Disaster Medicine. 2021;3:52-57 (In Russ.). doi: 10.33266/2070-1004-2021-3-52-57. 

33. Pronin M.A., Soldatov S.K. Malyye Dozy Radiatsii i Zdorov’ye Lotchikov = Low Doses of Radiation and the Health of Pilots. Ed. I.B.Ushakov. Moscow, Fizmatlit Publ., 2023. 232 p. (In Russ.).

 34. DeAngelis G., Wilson J.W. Chapter 18: Radiation-Related Risk Analysis for Atmospheric Flight Civil Aviation Flight Personnel. In: Wilson J.W., Jones I.W., Maiden D.L., Goldhagen P. Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign. NASA/CP-2003-212155. March 2003. P.352-367. URL: https://www.researchgate.net/publication/24289925_Radiation-Related_Risk_Analysis_for_Atmospheric_Flight_Civil_Aviation_Flight_Personnel/references

35. Ushakov I.B., Fedorov V.P., Pomerantsev N.A. Radiatsiya. Aviatsiya. Chelovek (Ocherki Prakticheskoy Radiobiologii Cheloveka) = Radiation. Aviation. Man (Essays on Practical Human Radiobiology). Moscow, FMBTS im. A.I.Burnazyana FMBA Rossii Publ., 2024. 388 p. (In Russ.).

36. Bukhtiyarov I.V., Zibarev Ye.V., Kur’yerov N.N., Immel’ O.V. Sanitary and Hygienic Assessment of Working Conditions of Civil Aviation Pilots. Gigiyena i Sanitariya = Hygiene and Sanitation. 2021;100;10:1084-1094 (In Russ.). doi: 10.47470/0016-9900-2021-100-10-1084-1094 

37. Bukhtiyarov I.V., Zibarev Ye.V., Kravchenko O.K. Problems of Hygienic Standardization of Working Conditions in Civil Aviation and Ways to Solve Them (Literature Review). Gigiyena i Sanitariya = Hygiene and Sanitation. 2022;101;10:1181-1189 (In Russ.). doi: 10.47470/0016-9900-2022-101-10-1181-1189

38. Armstrong T.W., Alsmiller R.G., & Barish J. Calculation of the Radiation Hazard at Supersonic Aircraft Altitudes Produced by an Energetic Solar Flare. Nuclear Science and Engineering. 1969;37;3:337–342. doi: 10.13182/NSE69-A19110 

39. Istochniki, Effekty i Opasnost’ Ioniziruyushchey Radiatsii = Sources, Effects and Danger of Ionizing Radiation. Report of the UN Scientific Committee on the Effects of Atomic Radiation Vol.1. Moscow, Mir Publ., 1992. 552 p. (In Russ.). URL: https://rusneb.ru/catalog/000199_000009_001655454/

40. Bezrodnykh I.P., Kazantsev C.G., Semenov V.T. Radiation Conditions on Sun-Synchronous Orbits during the Period of Maximum Solar Activity. Voprosy Elektromekhaniki. Trudy VNIIEM = Questions of Electromechanics. Proceedings of VNIIEM. 2010;116;3:23-26 (In Russ.).

41. Bezrodnykh I.P., Tyutnev A.P., Semenov V.T. Radiatsionnyye Effekty v Kosmose = Radiation Effects in Space. Part1. Radiation in Near–Earth space. Moscow, Korporatsiya VNIIEM Publ., 2014. 105 p. (In Russ.).

42. Mishev A., Panovska S., Usoskin I. Assessment of the Radiation Risk at Flight Altitudes for an Extreme Solar Particle Storm of 774 AD. J. Space Weather Space Clim. 2023;13:22. doi: 10.1051/swsc/2023020.

43. Burov V.A. Air Transportation and Space Weather. Geliogeofizicheskiye Issledovaniya = Heliogeophysical Research. 2013;5:43–52 (In Russ.).

44. Friedberg W., Copeland K.  Ionizing Radiation in Earth’s Atmosphere and in Space Near Earth.  Report No. DOT/FAA/AM-11/9. FAA Civil Aerospace Medical Institute. Federal Aviation Administration. Oklahoma City, May 2011. Final Report. 28 p.

45. Copeland K. CARI-7A: development and validation. Radiation Protection Dosimetry. FAA (FAA’s Civil Aerospace Medical Institute) 2017. P.1–13. doi:10.1093/rpd/ncw369 URL: https://www.faa.gov/data_research/research/med_humanfacs/aeromedical/radiobiology/cari7

46. Copeland K. CARI-7 documentation: particle spectra. Report № DOT/FAA/AM-21/4. Civil Aerospace Medical Institute FAA. March 2021. Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave., S.W. Washington, DC 20591. 21 p. / Copeland K. CARI-7 documentation: radiation transport in the atmosphere. Report № DOT/FAA/AM-21/5 March 2021. Civil Aerospace Medical Institute FAA. Office of Aerospace Medicine Federal Aviation Administration 800 Independence Ave, S.W. Washington. 30 p. URL: http://www.faa.gov/go/oamtechreports/

47. Mares V., Maczka T., Leuthold G., Rühm W. Air Crew Dosimetry with a New Version of EPCARD. Radiat Prot Dosimetry. 2009;136;4:262-266. doi: 10.1093/rpd/ncp129.

48. Sovilj M.P., Vuković B., Radolić V., Miklavčić I., Stanić D. Potential Benefit of Retrospective Use of Neutron Monitors in Improving Ionising Radiation Exposure Assessment on International Flights: Issues raised by Neutron Passive Dosimeter Measurements and EPCARD Simulations during Sudden Changes in Solar Activity. Arh Hig Rada Toksikol. 2020;71;2:152-157. doi: 10.2478/aiht-2020-71-3403.

49. Kiefer J. On the Biological Significance of Radiation Exposure in Air Transport. Radiation Protection Dosimetry. 1993;48;1:107-110. doi: 10.1093/oxfordjournals.rpd.a081851

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.02.2025. Accepted for publication: 25.03.2025.