Медицинская радиология и радиационная безопасность. 2015. Том 60. № 4. С. 62-70

ЛУЧЕВАЯ ТЕРАПИЯ

Н.К. Вознесенский1, Н.В. Богданов1, С.Л. Дорохович2, Ю.Г. Забарянский3, Ю.А. Кураченко3, Е.С. Матусевич1, В.А. Левченко2, Ю.С. Мардынский4, Н.Н. Вознесенская5

МОДЕЛИРОВАНИЕ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В КОСТНОЙ ТКАНИ ПОЗВОНКОВ ПРИ СТАБИЛИЗИРУЮЩЕЙ ВЕРТЕБРОПЛАСТИКЕ

1. Институт атомной энергетики НИЯУ МИФИ, Обнинск; 2. Экспериментальный научно-исследовательский и методический центр «Моделирующие системы», Обнинск; 3. Физико-энергетический институт имени А.И. Лейпунского, Обнинск, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. ; 4. Медицинский радиологический научный центр им. А.Ф. Цыба, Обнинск; 5. Городская клиническая больница ФМБА, Обнинск

РЕФЕРАТ

Цель: Применительно к задачам стабилизирующей вертебропластики выполнить исследования температурных полей, обусловленных полимеризацией костного цемента. Верифицировать полученные результаты посредством термогидравлических расчетов. Модифицировать программные коды, используемые для расчета нестационарных температурных полей в ядерных установках, с целью их адаптации к новой предметной области.

Материал и методы: Выполнены две группы экспериментов по измерению нестационарного распределения температуры: а) при полимеризации цемента в изолированной кювете; б) при полимеризации цемента в позвонке. Для расчетного моделирования экспериментов адаптирован 3D нестационарный код КАНАЛ, применяемый в задачах теплогидравлики ядерных энергетических установок.

Результаты: Для обоих экспериментов достигнута удовлетворительная согласованность измеренных и рассчитанных температурных характеристик - как их пространственного, так и временного распределения. Особо существенной является близость экспериментальных и расчетных значений максимума температуры при полимеризации цемента в позвонке: типичные расхождения эксперимента и расчета не превышают 1-2 °С. Выполненное исследование обеспечивает теоретическую поддержку вертебропластики в двух аспектах: а) применением созданных расчетных технологий; б) оценкой степени терапевтического воздействия в результате нагрева костной ткани.

Ключевые слова: метастазы в позвоночнике, вертебропластика, температурные поля, экспериментальное и расчетное моделирование, терапевтический эффект

СПИСОК ЛИТЕРАТУРЫ

  1. Galibert P., Deramond H., Rosat P., Le Gars D. Note préliminaire sur le traitement des angiomes vertébraux par vertébroplastie acrylique percutanée // Neuro chirurgie. 1987. Vol. 33. P. 166-168.
  2. Deramond H., Depriester C., Galibert P., Le Gars D. Percutaneous vertebroplasty with polymethyl methacrylate. Technique, indicatios, and results // Radiol. Clin. North Amer. 1998. Vol. 36. P. 33-546.
  3. Kaemmerlen P., Thiesse P., Jonas P. et al. Percutaneous injection of orthopaedic cement in metastatic vertebral lesions // N. Engl. J. Med. 1989. Vol. 321. No. 2. P. 121-132.
  4. Aliev M., Dolgushin B., Teplyakov V., Valiev A. Transcutaneous vertebroplasty in combined treatment of patients with tumoral lesions of the spine // EMSOS. 2003. Abs. A-044. 72 p.
  5. Aliev M., Teplyakov V., Karpenko V., Valiev A. Vertebroplasty as a choice of treatment of painful syndrome in patients with tumoral lesions of the spine // EMSOS. 2004. Abs. 28. 5 p.
  6. Cortet В., Cotton B., Boutry N. et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma // Rev. Rheum. Ed. 1997. Vol. 64. No. 3. P. 177-183.
  7. Валиев М.А., Мусаев Э.Р., Тепляков В.В. и соавт. Чрескожная вертебропластика в онкологии. Под ред. М.Д. Алиева, Б.И. Долгушина. М.: ИНФРА-М. 2010. 71 с.
  8. Алиев М.Д., Соколовский В.А. Высокотехнологичное лечение в онкоортопедии. М. 2008. 24 с.
  9. Ptashnikov D.A., Usikov V.D., Korytova L.I. et al. Pathological fractures of spine caused by tumor: diagnostics and treatment tactic // In: “First International Scientific Distance Congress on Spine and Spinal Cord Surgery “InterSpine - 2004”. Saint Petersburg, Russia, September. 2004. P. 36-38.
  10. Кустов А.В., Жаринов Г.М., Рудь С.Д. и соавт. Изучение эффективности пункционной вертебропластики и лучевой терапии в лечении агрессивных гемангиом позвоночника // Мед. акад. журнал. 2008. № 4. С. 101-114.
  11. Джинджихадзе Р.С., Лазарев В.А., Горожанин А.В. и соавт. Перкутанная вертебропластика // Нейрохирургия. 2005. № 1. C. 36-41.
  12. Diamond T.H., Champion B., Clark W.A. Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy // Amer. J. Med. 2003. Vol. 114. No. 4. P. 257-265.
  13. Perez-Higueras A., Alvarez L., Rossi R.E. et al. Percutaneous vertebroplasty: long term clinical and radiological outcome // Neuroradiology. 2002. Vol. 44. No. 11. P. 950-954.
  14. Martin J.B., Wetzel S.G., Seium Y. et al. Percutaneous vertebroplasty in metastatic disease: transpedicular access and treatment of lysed pedicles-initial experience // Radiology. 2003. Vol. 229. No. 2. P. 93-597.
  15. Stricker K., Orler R., Yen K. et al. Severe hypercapnia due to pulmonary embolism of polymethyl methacrylate during vertebroplasty // Anesth. Analg. 2004. Vol. 98. No. 4. P. 1184-1186.
  16. Choe Du H., Marom E.M., Ahrar K. et al. Pulmonary embolism of polymethyl methacrylate during percutaneous vertebroplasty and kyphoplasty // AJR Amer. J. Roentgenol. 2004. Vol. 183. No. 4. P. 1097-1102.
  17. Yoo K.Y., Jeong S.W., Yoon W., Lee J. Acute respiratory distress syndrome associated with pulmonary cement embolism following percutaneous vertebroplasty with polymethyl methacrylate // Spine. 2004. Vol. 29. No. 14. P. 294-297.
  18. Nussbaum D.A., Gailloud P., Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site // J. Vasc. Interv. Radiol. 2004. Vol. 15. No. 11. P. 1185-1192.
  19. Cortet В., Cotton B., Boutry N. et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma // Rev. Rheum. Ed. 1997. Vol. 64. No. 3. P. 177-183.
  20. Мануковский В.А. Вертебропластика в лечении патологии позвоночника (клинико-экспериментальное исследование). СПб.: Автореферат дисс. докт. мед. наук. 2009, 45 с.
  21. Tomita K., Kawahara N., Kobayashi T. et al. Surgical strategy for spinal metastases // Spine. 2001. Vol. 26. No. 3. P. 298-330.
  22. Kаnеkо S., Sehgal V., Skinner H.B. et al. Radioactive bone cement for the treatment of spinal metastases: a dosimetric analysis of simulated clinical scenarious // Phys. Med. Biol. 2012. Vol. 57. P. 4387-4401.
  23. San Millan R.D., Burkhardt K., Jean B. et al. Pathology findings with acrylic implants. //Bone, 1999. Vol. 25. No. 2. P. 85-90.
  24. Wetzel S.G., Martin J.B., Somon T. et al. Painful osteolytic metastasis of the atlas: treatment with percutaneous vertebroplasty // Spine. 2002. Vol. 27. No. 22. P. 493-495.
  25. Deramond H., Wright N.T., Belkoff S.M. Temperature elevation caused by bone cement polymerization during vertebroplasty // Bone, 1999. Vol. 25. No. 2. P. 17-21.
  26. Belkoff S.M., Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty // Spine. 2003. Vol. 28. No. 14. P. 1555-1559.
  27. Verlaan J.J., Oner F.C., Verbout A.J. et al. Temperature elevation after vertebroplasty with polymethylmethacrylate in the goat spine // J. Biomed. Res. B: Appl. Biomater. 2003. Vol. 67. No. 1. P. 81-585.
  28. Anselmetti G., Manca A., Kanika Kh. et al. Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: An in vivo study in humans // Cardiovasc. Intervent. Radiol. 2009. Vol. 32. P. 491-498.
  29. Фрадкин С.З. Современное состояние гипертермической онкологии и тенденции ее развития // Мед. новости. 2004. № 3. C. 3-8.
  30. Li C., Chien S., Branemark P.I. Heat shock-induced necrosis and apoptosis in osteoblasts // J. Orthop. Res. 1999. Vol. 17. No. 6. P. 891-899.
  31. Eriksson R.A., Albrektsson T., Magnusson B. Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit // Scand. Plast. Reconstr. Surg. 1984. Vol. 18. No. 3. P. 261-268.
  32. Александров Н.Н., Савченко Н.Е., Фрадкин С.З. и соавт. Применение гипертермии и гипергликемии при лечении злокачественных опухолей. М.: Медицина, 1980. Vol. 256 с.
  33. Li S., Kotha S., Huang C.H. et al. Finite element thermal analysis of bone cement for joint replacements // J. Biomech. Eng. 2003. Vol. 125. No. 3. P. 315-322.
  34. Po-Liang Lai, Ching-Lung Tai, Lih-Huei Chen. et al. Cement leakage causes potential thermal injury in vertebroplasty. 2011. URL: http://www.biomedcentral.com/1471-2474/12/116.
  35. Модуль АЦП/ЦАП ZET 210. URL: http://www.zetlab.ru/catalog/ACP/ZET_210/.
  36. CementoFixx-R Hauptmerkmale Opti Med. Global Care. Instructions for use surgical cement for vertebroplasty sterile, radiopaque. 2004. 120 p. http://www.opti-med.de/uploads/tx_vaproducts/CementoFixx-R-M-L_03-2013.pdf.
  37. Канал. Теплогидравлический код. Описание численной схемы кода КАНАЛ. Отчет о НИР. Т. 7. Обнинск: ЭНИМЦ МС. 2008. 95 с.
  38. Вознесенский Н.К., Богданов Н.В., Дорохович С.Л. и соавт. Моделирование гипертермии при стабилизирующей вертебропластике // Ядерная энергетика. 2013. № 1. С. 37-48.
  39. Overgaard J. The current and potential role of hyperthermia in radiotherapy // Int. J. Radiat. Oncol. Biol. Phys. 1989. Vol. 16. P. 35-549.

Для цитирования: Вознесенский Н.К., Богданов Н.В., Дорохович С.Л., Забарянский Ю.Г., Кураченко Ю.А., Матусевич Е.С., Левченко В.А., Мардынский Ю.С., Вознесенская, Н.Н. Моделирование температурных полей в костной ткани позвонков при стабилизирующей вертебропластике Медицинская радиология и радиационная безопасность. 2015. Т. 60. № 4. С. 62-70.

PDF (RUS) Полная версия статьи