О ЖУРНАЛЕ
Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.
Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.
Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.
Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.
Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.
Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.
С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.
Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.
Медицинская радиология и радиационная безопасность. 2022. Том 67. № 4
А.В. Капишников1, Е.Н. Суровцев1,2, Ю.Д. Удалов3
МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ
ПЕРВИЧНЫХ ВНЕМОЗГОВЫХ ОПУХОЛЕЙ:
ПРОБЛЕМЫ ДИАГНОСТИКИ И ПЕРСПЕКТИВЫ РАДИОМИКИ
1 Самарский государственный медицинский университет Минздрава России, Самара, Россия.
2 Лечебно-диагностический центр Международного института биологических систем имени Сергея Березина, Тольятти, Россия.
3 Федеральный научно-клинический центр медицинской радиологии и онкологии ФМБА России, Димитровград, Россия.
Контактное лицо: Капишников Александр Викторович, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
СОДЕРЖАНИЕ
Введение
МРТ семиотика в дифференциальной диагностике первичных внемозговых опухолей (ПВО)
Локализация опухоли и её связь с анатомическими структурами
Неоднородность (гетерогенность) опухоли
Границы опухоли и перитуморальный отек
Измеряемый коэффициент диффузии (ИКД)
Дуральный «хвост»
Информационные технологии анализа МРТ изображений и радиомика
Радиомика в дифференциальной диагностике ПВО
Заключение
Ключевые слова: магнитно-резонансная томография, первичные внемозговые опухоли, менингиомы, радиомика, информационные технологии
Для цитирования: Капишников А.В., Суровцев Е.Н., Удалов Ю.Д. Магнитно-резонансная томография первичных внемозговых опухолей: проблемы диагностики и перспективы радиомики // Медицинская радиология и радиационная безопасность. 2022. Т. 67. № 4. С. 49–56. DOI: 10.33266/1024-6177-2022-67-4-49-56
Список литературы
1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger DL, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.
2. Goldbrunner R, Stavrinou P, Jenkinson MD, Sahm F, Mawrin C, Weber DCL, et al. EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol. 2021 Jun 28:noab150. doi: 10.1093/neuonc/noab150.
3. Goldbrunner R, Weller M, Regis J, Lund-Johansen M, Stavrinou P, Reuss D, et al. EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro Oncol. 2020;22(1):31-45. doi:10.1093/neuonc/noz153.
4. Shin DW, Kim JH, Chong S, Song SW, Kim YH, Cho YHL, et al. Intracranial solitary fibrous tumor/hemangiopericytoma: tumor reclassification and assessment of treatment outcome via the 2016 WHO classification. J Neurooncol. 2021 Sep;154(2):171-178. doi: 10.1007/s11060-021-03733-7.
5. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019 Nov 1;21(Suppl 5):v1-v100. doi: 10.1093/neuonc/noz150.
6. Fountain DM, Young AMH, Santarius T. Malignant meningiomas. Handb Clin Neurol. 2020;170:245-250. doi:10.1016 /B978-0-12-822198-3.00044-6.
7. Осборн А. Г., Зальцман К. Л., Завери М. Д. Лучевая диагностика. Головной мозг. М.: Издательство Панфилова, 2018. 1216 с. [Osborn А.G., Zalcman К.L., Zaveri M.D. Radiology. Brain. Moscow, Panfilova Publishing House, 2018. 420p. (in Russ.)]
8. Yeole U, Rao KVLN, Beniwal M, Sivakoti S, Santosh V, Somanna S. Cranial and Spinal Malignant Peripheral Nerve Sheath Tumor: A Pathological Enigma. J Neurosci Rural Pract. 2021 Sep 28;12(4):770-779. doi: 10.1055/s-0041-1735325.
9. Islim AI, Mohan M, Moon RDC, Rathi N, Kolamunnage-Dona R, Crofton A, et al. Treatment Outcomes of Incidental Intracranial Meningiomas: Results from the IMPACT Cohort. World Neurosurg. 2020;138:e725-e735. doi:10.1016/j.wneu.2020.03.060.
10. McNeill KA. Epidemiology of Brain Tumors. Neurol Clin. 2016;34(4):981-998. doi:10.1016/j.ncl.2016.06.014.
11. Sun SQ, Cai C, Murphy RK, DeWees T, Dacey RG, Grubb RL, et al. Management of atypical cranial meningiomas, part 2: predictors of progression and the role of adjuvant radiation after subtotal resection [published correction appears in Neurosurgery. 2014 Dec;75(6):733]. Neurosurgery. 2014;75(4):356-363. doi:10.1227 /NEU.0000000000000462.
12. Laviv Y, Thomas A, Kasper EM. Hypervascular Lesions of the Cerebellopontine Angle: The Relevance of Angiography as a Diagnostic and Therapeutic Tool and the Role of Stereotactic Radiosurgery in Management. A Comprehensive Review. World Neurosurg. 2017;100:100–17.
13. Roos DE, Patel SG, Potter AE, Zacest AC. When is an acoustic neuroma not an acoustic neuroma? Pitfalls for radiosurgeons. J Med Imaging Radiat Oncol. 2015;59(4):474-479. doi:10.1111 /1754-9485.12328.
14. Alatriste-Martínez S, Moreno-Jiménez S, Gutiérrez-Aceves GA, Suárez-Campos JJ, García-Garduño OA, Rosas-Cabral A, et al. Linear Accelerator-Based Radiosurgery of Grade I Intracranial Meningiomas. World Neurosurg X. 2019;3:100027. Published 2019 Mar 7. doi:10.1016/j.wnsx.2019.100027.
15. Gihr GA, Horvath-Rizea D, Kohlhof-Meinecke P, Ganslandt O, Henkes H, Richter C, et al. Histogram Profiling of Postcontrast T1-Weighted MRI Gives Valuable Insights into Tumor Biology and Enables Prediction of Growth Kinetics and Prognosis in Meningiomas. Transl Oncol. 2018;11(4):957-961. doi:10.1016 /j.tranon.2018.05.009.
16. Shabani S, Kaushal M, Kaufman B, Knipstein J, Lawlor MW, Lew S, et al. Intracranial Extraskeletal Mesenchymal Chondrosarcoma: Case Report and Review of the Literature of Reported Cases in Adults and Children. World Neurosurg. 2019;129:302-310. doi:10.1016/j.wneu.2019.05.221.
17. Dunn IF, Bi WL, Mukundan S, Delman BN, Parish J, Atkins T, et al. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Imaging in the Diagnosis and Management of Patients With Vestibular Schwannomas. Neurosurgery. 2018;82(2):E32-E34. doi:10.1093/neuros/nyx510.
18. Stone JA, Cooper H, Castillo M, Mukherji SK. Malignant schwannoma of the trigeminal nerve. AJNR Am J Neuroradiol. 2001;22(3):505-507.
19. Ohba S, Murayama K, Nishiyama Y, Adachi K, Yamada S, Abe M, et al. Clinical and Radiographic Features for Differentiating Solitary Fibrous Tumor/Hemangiopericytoma From Meningioma. World Neurosurg. 2019;130:e383-e392. doi:10.1016/j.wneu .2019.06.094.
20. Lin BJ, Chou KN, Kao HW, Lin C, Tsai WC, Feng SW, et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. J Neurosurg. 2014;121(5):1201-1208. doi:10.3171/2014.7 .JNS132359.
21. Ranabhat K, Bishokarma S, Agrawal P, Shrestha P, Panth R, Ghimire RK. Role of MR Morphology and Diffusion-Weighted Imaging in the Evaluation of Meningiomas: Radio-Pathologic Correlation. JNMA J Nepal Med Assoc. 2019;57(215):37-44.
22. Adeli A, Hess K, Mawrin C, Streckert EMS, Stummer W, Paulus W, et al. Prediction of brain invasion in patients with meningiomas using preoperative magnetic resonance imaging. Oncotarget. 2018;9(89):35974-35982. Published 2018 Nov 13. doi:10.18632/oncotarget.26313.
23. Bečulić H, Skomorac R, Jusić A, Alić F, Mašović A, Burazerović E, et al. Correlation of peritumoral brain edema with morphological characteristics and Ki67 proliferative index in resected intracranial meningiomas. Acta Clin Croat. 2019;58(1):42-49. doi:10.20471 /acc.2019.58.01.06.
24. Berhouma M, Jacquesson T, Jouanneau E, Cotton F. Pathogenesis of peri-tumoral edema in intracranial meningiomas. Neurosurg Rev. 2019;42(1):59-71. doi:10.1007/s10143-017-0897-x.
25. Lu Z, You Z, Xie D, Wang Z. Apparent diffusion coefficient values in differential diagnosis and prognostic prediction of solitary of fibrous tumor/hemangiopericytoma (WHOII) and atypical meningioma. Technol Health Care. 2019;27(2):137-147. doi:10.3233 /THC-181447.
26. Shankar JJS, Hodgson L, Sinha N. Diffusion weighted imaging may help differentiate intracranial hemangiopericytoma from meningioma. J Neuroradiol. 2019;46(4):263-267. doi:10.1016 /j.neurad.2018.11.002.
27. El-Ali AM, Agarwal V, Thomas A, Hamilton RL, Filippi CG. Clinical metric for differentiating intracranial hemangiopericytomas from meningiomas using diffusion weighted MRI. Clin Imaging. 2019;54:1-5. doi:10.1016/j.clinimag.2018.10.018.
28. Takeguchi T, Miki H, Shimizu T, Kikuchi K, Mochizuki T, Ohue S, et al. The dural tail of intracranial meningiomas on fluid-attenuated inversion-recovery images. Neuroradiology. 2004;46(2):130-135. doi:10.1007 /s00234-003-1152-4.
29. Aerts HJ. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 2016 Dec 1;2(12):1636-1642. doi: 10.1001/jamaoncol.2016.2631. PMID: 27541161.
30. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665. doi:10.1259/bjr.20160665.
31. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019;9(5):1303-1322. Published 2019 Feb 12. doi:10.7150 /thno.30309.
32. Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915-931. doi:10.1118/1.3528204.
33. van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al. Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Mol Imaging Biol. 2016;18(5):788-795. doi:10.1007/s11307-016-0940-2.
34. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9(7):e102107. Published 2014 Jul 15. doi:10.1371 /journal.pone.0102107.
35. Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, et al. CT Features Associated with Epidermal Growth Factor Receptor Mutation Status in Patients with Lung Adenocarcinoma. Radiology. 2016;280(1):271-280. doi:10.1148/radiol.2016151455.
36. Scalco E, Rizzo G. Texture analysis of medical images for radiotherapy applications. Br J Radiol. 2017;90(1070):20160642. doi:10.1259/bjr.201 60642.
37. Soni N, Priya S, Bathla G. Texture Analysis in Cerebral Gliomas: A Review of the Literature. AJNR Am J Neuroradiol. 2019 Jun;40(6):928-934. doi: 10.3174/ajnr.A6075.
38. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. doi:10.1038/nrclinonc.2017.141.
39. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep. 2016;6:34921. Published 2016 Oct 10. doi:10.1038/srep34921.
40. Savio SJ, Harrison LC, Luukkaala T, Heinonen T, Dastidar P, Soimakallio S, et al. Effect of slice thickness on brain magnetic resonance image texture analysis. Biomed Eng Online. 2010;9:60. Published 2010 Oct 18. doi:10.1186/1475-925X-9-60.
41. Yang F, Dogan N, Stoyanova R, Ford JC. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth. Phys Med. 2018;50:26-36. doi:10.1016 /j.ejmp.2018.05.017.
42. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310-1320. doi:10.1109/TMI.2010.2046908.
43. Waugh SA, Purdie CA, Jordan LB, et al. Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur Radiol. 2016;26(2):322-330. doi:10.1007/s00330-015-3845-6.
44. Park YW, Oh J, You SC, Han K, Ahn SS, Choi YS, et al. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol. 2019;29(8):4068-4076. doi:10.1007 /s00330-018-5830-3.
45. Laukamp KR, Shakirin G, Baeßler B, Thiele F, Zopfs D, Große Hokamp N, et al. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. World Neurosurg. 2019;132:e366-e390. doi:10.1016/j.wneu.2019.08.148.
46. Lu Y, Liu L, Luan S, Xiong J, Geng D, Yin B. The diagnostic value of texture analysis in predicting WHO grades of meningiomas based on ADC maps: an attempt using decision tree and decision forest. Eur Radiol. 2019; 29(3):1318-1328. doi:10.1007/s00330-018-5632-7.
47. Yan PF, Yan L, Hu TT, Xiao DD, Zhang Z, Zhao HY, et al. The Potential Value of Preoperative MRI Texture and Shape Analysis in Grading Meningiomas: A Preliminary Investigation. Transl Oncol. 2017;10(4):570-577. doi:10.1016/j.tranon.2017.04.006.
48. Chen C, Guo X, Wang J, Guo W, Ma X, Xu J. The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study. Front Oncol. 2019;9:1338. Published 2019 Dec 6. doi:10.3389/fonc.2019.01338.
49. Ke C, Chen H, Lv X, Li H, Zhang Y, Chen M, et al. Differentiation Between Benign and Nonbenign Meningiomas by Using Texture Analysis From Multiparametric MRI. J Magn Reson Imaging. 2020;51(6):1810-1820. doi:10.1002/jmri.26976.
50. Chu H, Lin X, He J, Pang P, Fan B, Lei P, et al. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade. Acad Radiol. 2021;28(5):687-693. doi:10.1016 /j.acra.2020.03.034.
51. Li X, Lu Y, Xiong J, Wang D, She D, Kuai X, et al. Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis. J Neuroradiol. 2019;46(5):281-287. doi:10.1016/j.neurad.2019.05.013.
52. Kanazawa T, Minami Y, Jinzaki M, Toda M, Yoshida K, Sasaki H. Preoperative Prediction of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Magnetic Resonance Imaging Texture Analysis. World Neurosurg. 2018;120:e1208-e1216. doi:10.1016 /j.wneu.2018.09.044.
53. He W, Xiao X, Li X, Guo Y, Guo L, Liu X, et al. Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma. Eur J Radiol. 2019;112:186-191. doi:10.1016/j.ejrad.2019.01.023.
54. Nagano H, Sakai K, Tazoe J, Yasuike M, Akazawa K, Yamada K. Whole-tumor histogram analysis of DWI and QSI for differentiating between meningioma and schwannoma: a pilot study. Jpn J Radiol. 2019;37(10):694-700. doi:10.1007/s11604-019-00862-y.
55. Gu H, Zhang X, di Russo P, Zhao X, Xu T. The Current State of Radiomics for Meningiomas: Promises and Challenges. Front Oncol. 2020;10:567736. Published 2020 Oct 27. doi:10.3389 /fonc.2020.567736.
PDF (RUS) Полная версия статьи
Конфликт интересов. Автор заявляют об отсутствии конфликта интересов.
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 20.04.2022. Принята к публикации: 25.05.2022.