JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4

Magnetic Resonance Imaging of Primary Extra-Axial Intracranial Tumors:
Diagnostic Problems and Prospects of Radiomics

А.V. Kapishnikov1, E.N. Surovcev1,2, Yu.D. Udalov3

1Samara State Medical University, Samara, Russia.

2Treatment and Diagnostic Center of the International Institute of Biological Systems named after Sergey Berezin, Tolyatti, Russia.

3Federal Scientific Clinical Center for Medical Radiology and Oncology, Dimitrovgrad, Russia.

Contact person: Kapishnikov Aleksandr Viktorovich: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

CONTENTS

Introduction

MRI semiotics in the differential diagnosis of primary extra-axial intracranial tumors (PEIT)

Localization of the tumor and its relationship with the anatomical structures

Heterogeneity (heterogeneity) of the tumor

Tumor margins and peritumoral edema

Apparent diffusion coefficient (ADC)

Dural tail sign

Information technology for MRI analysis and radiomics

Radiomics in differential diagnosis of PEIT

Conclusion

Keywords: magnetic resonance imaging, primary extra-axial intracranial tumors, meningiomas, radiomics, information technology.

For citation: Kapishnikov АV, Surovcev EN, Udalov YuD. Magnetic Resonance Imaging of Primary Extra-Axial Intracranial Tumors: Diagnostic Problems and Prospects of Radiomics. Medical Radiology and Radiation Safety. 2022;67(4):49-56. DOI: 10.33266/1024-6177-2022-67-4-49-56

References

1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger DL, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.

2. Goldbrunner R, Stavrinou P, Jenkinson MD, Sahm F, Mawrin C, Weber DCL, et al. EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol. 2021 Jun 28:noab150. doi: 10.1093/neuonc/noab150.

3. Goldbrunner R, Weller M, Regis J, Lund-Johansen M, Stavrinou P, Reuss D, et al. EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro Oncol. 2020;22(1):31-45. doi:10.1093/neuonc/noz153.

4. Shin DW, Kim JH, Chong S, Song SW, Kim YH, Cho YHL, et al. Intracranial solitary fibrous tumor/hemangiopericytoma: tumor reclassification and assessment of treatment outcome via the 2016 WHO classification. J Neurooncol. 2021 Sep;154(2):171-178. doi: 10.1007/s11060-021-03733-7.

5. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019 Nov 1;21(Suppl 5):v1-v100. doi: 10.1093/neuonc/noz150.

6. Fountain DM, Young AMH, Santarius T. Malignant meningiomas. Handb Clin Neurol. 2020;170:245-250. doi:10.1016 /B978-0-12-822198-3.00044-6.

7. Осборн А. Г., Зальцман К. Л., Завери М. Д. Лучевая диагностика. Головной мозг. М.: Издательство Панфилова, 2018. 1216 с. [Osborn А.G., Zalcman К.L., Zaveri M.D. Radiology. Brain. Moscow, Panfilova Publishing House, 2018. 420p. (in Russ.)]

8. Yeole U, Rao KVLN, Beniwal M, Sivakoti S, Santosh V, Somanna S. Cranial and Spinal Malignant Peripheral Nerve Sheath Tumor: A Pathological Enigma. J Neurosci Rural Pract. 2021 Sep 28;12(4):770-779. doi: 10.1055/s-0041-1735325.

9. Islim AI, Mohan M, Moon RDC, Rathi N, Kolamunnage-Dona R, Crofton A, et al. Treatment Outcomes of Incidental Intracranial Meningiomas: Results from the IMPACT Cohort. World Neurosurg. 2020;138:e725-e735. doi:10.1016/j.wneu.2020.03.060.

10. McNeill KA. Epidemiology of Brain Tumors. Neurol Clin. 2016;34(4):981-998. doi:10.1016/j.ncl.2016.06.014.

11. Sun SQ, Cai C, Murphy RK, DeWees T, Dacey RG, Grubb RL, et al. Management of atypical cranial meningiomas, part 2: predictors of progression and the role of adjuvant radiation after subtotal resection [published correction appears in Neurosurgery. 2014 Dec;75(6):733]. Neurosurgery. 2014;75(4):356-363. doi:10.1227 /NEU.0000000000000462.

12. Laviv Y, Thomas A, Kasper EM. Hypervascular Lesions of the Cerebellopontine Angle: The Relevance of Angiography as a Diagnostic and Therapeutic Tool and the Role of Stereotactic Radiosurgery in Management. A Comprehensive Review. World Neurosurg. 2017;100:100–17.

13. Roos DE, Patel SG, Potter AE, Zacest AC. When is an acoustic neuroma not an acoustic neuroma? Pitfalls for radiosurgeons. J Med Imaging Radiat Oncol. 2015;59(4):474-479. doi:10.1111 /1754-9485.12328.

14. Alatriste-Martínez S, Moreno-Jiménez S, Gutiérrez-Aceves GA, Suárez-Campos JJ, García-Garduño OA, Rosas-Cabral A, et al. Linear Accelerator-Based Radiosurgery of Grade I Intracranial Meningiomas. World Neurosurg X. 2019;3:100027. Published 2019 Mar 7. doi:10.1016/j.wnsx.2019.100027.

15. Gihr GA, Horvath-Rizea D, Kohlhof-Meinecke P, Ganslandt O, Henkes H, Richter C, et al. Histogram Profiling of Postcontrast T1-Weighted MRI Gives Valuable Insights into Tumor Biology and Enables Prediction of Growth Kinetics and Prognosis in Meningiomas. Transl Oncol. 2018;11(4):957-961. doi:10.1016 /j.tranon.2018.05.009.

16. Shabani S, Kaushal M, Kaufman B, Knipstein J, Lawlor MW, Lew S, et al. Intracranial Extraskeletal Mesenchymal Chondrosarcoma: Case Report and Review of the Literature of Reported Cases in Adults and Children. World Neurosurg. 2019;129:302-310. doi:10.1016/j.wneu.2019.05.221.

17. Dunn IF, Bi WL, Mukundan S, Delman BN, Parish J, Atkins T, et al. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Imaging in the Diagnosis and Management of Patients With Vestibular Schwannomas. Neurosurgery. 2018;82(2):E32-E34. doi:10.1093/neuros/nyx510.

18. Stone JA, Cooper H, Castillo M, Mukherji SK. Malignant schwannoma of the trigeminal nerve. AJNR Am J Neuroradiol. 2001;22(3):505-507. 

19. Ohba S, Murayama K, Nishiyama Y, Adachi K, Yamada S, Abe M, et al. Clinical and Radiographic Features for Differentiating Solitary Fibrous Tumor/Hemangiopericytoma From Meningioma. World Neurosurg. 2019;130:e383-e392. doi:10.1016/j.wneu .2019.06.094.

20. Lin BJ, Chou KN, Kao HW, Lin C, Tsai WC, Feng SW, et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. J Neurosurg. 2014;121(5):1201-1208. doi:10.3171/2014.7 .JNS132359.

21. Ranabhat K, Bishokarma S, Agrawal P, Shrestha P, Panth R, Ghimire RK. Role of MR Morphology and Diffusion-Weighted Imaging in the Evaluation of Meningiomas: Radio-Pathologic Correlation. JNMA J Nepal Med Assoc. 2019;57(215):37-44. 

22. Adeli A, Hess K, Mawrin C, Streckert EMS, Stummer W, Paulus W, et al. Prediction of brain invasion in patients with meningiomas using preoperative magnetic resonance imaging. Oncotarget. 2018;9(89):35974-35982. Published 2018 Nov 13. doi:10.18632/oncotarget.26313.

23. Bečulić H, Skomorac R, Jusić A, Alić F, Mašović A, Burazerović E, et al. Correlation of peritumoral brain edema with morphological characteristics and Ki67 proliferative index in resected intracranial meningiomas. Acta Clin Croat. 2019;58(1):42-49. doi:10.20471 /acc.2019.58.01.06.

24. Berhouma M, Jacquesson T, Jouanneau E, Cotton F. Pathogenesis of peri-tumoral edema in intracranial meningiomas. Neurosurg Rev. 2019;42(1):59-71. doi:10.1007/s10143-017-0897-x.

25. Lu Z, You Z, Xie D, Wang Z. Apparent diffusion coefficient values in differential diagnosis and prognostic prediction of solitary of fibrous tumor/hemangiopericytoma (WHOII) and atypical meningioma. Technol Health Care. 2019;27(2):137-147. doi:10.3233 /THC-181447.

26. Shankar JJS, Hodgson L, Sinha N. Diffusion weighted imaging may help differentiate intracranial hemangiopericytoma from meningioma. J Neuroradiol. 2019;46(4):263-267. doi:10.1016 /j.neurad.2018.11.002.

27. El-Ali AM, Agarwal V, Thomas A, Hamilton RL, Filippi CG. Clinical metric for differentiating intracranial hemangiopericytomas from meningiomas using diffusion weighted MRI. Clin Imaging. 2019;54:1-5. doi:10.1016/j.clinimag.2018.10.018.

28. Takeguchi T, Miki H, Shimizu T, Kikuchi K, Mochizuki T, Ohue S, et al. The dural tail of intracranial meningiomas on fluid-attenuated inversion-recovery images. Neuroradiology. 2004;46(2):130-135. doi:10.1007 /s00234-003-1152-4.

29. Aerts HJ. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 2016 Dec 1;2(12):1636-1642. doi: 10.1001/jamaoncol.2016.2631. PMID: 27541161.

30. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665. doi:10.1259/bjr.20160665.

31. Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019;9(5):1303-1322. Published 2019 Feb 12. doi:10.7150 /thno.30309.

32. Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys. 2011;38(2):915-931. doi:10.1118/1.3528204.

33. van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al. Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Mol Imaging Biol. 2016;18(5):788-795. doi:10.1007/s11307-016-0940-2.

34. Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9(7):e102107. Published 2014 Jul 15. doi:10.1371 /journal.pone.0102107.

35. Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, et al. CT Features Associated with Epidermal Growth Factor Receptor Mutation Status in Patients with Lung Adenocarcinoma. Radiology. 2016;280(1):271-280. doi:10.1148/radiol.2016151455.

36. Scalco E, Rizzo G. Texture analysis of medical images for radiotherapy applications. Br J Radiol. 2017;90(1070):20160642. doi:10.1259/bjr.201 60642.

37. Soni N, Priya S, Bathla G. Texture Analysis in Cerebral Gliomas: A Review of the Literature. AJNR Am J Neuroradiol. 2019 Jun;40(6):928-934. doi: 10.3174/ajnr.A6075.

38. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. doi:10.1038/nrclinonc.2017.141.

39. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep. 2016;6:34921. Published 2016 Oct 10. doi:10.1038/srep34921.

40. Savio SJ, Harrison LC, Luukkaala T, Heinonen T, Dastidar P, Soimakallio S, et al. Effect of slice thickness on brain magnetic resonance image texture analysis. Biomed Eng Online. 2010;9:60. Published 2010 Oct 18. doi:10.1186/1475-925X-9-60.

41. Yang F, Dogan N, Stoyanova R, Ford JC. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth. Phys Med. 2018;50:26-36. doi:10.1016 /j.ejmp.2018.05.017.

42. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310-1320. doi:10.1109/TMI.2010.2046908.

43. Waugh SA, Purdie CA, Jordan LB, et al. Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur Radiol. 2016;26(2):322-330. doi:10.1007/s00330-015-3845-6.

44. Park YW, Oh J, You SC, Han K, Ahn SS, Choi YS, et al. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur Radiol. 2019;29(8):4068-4076. doi:10.1007 /s00330-018-5830-3.

45. Laukamp KR, Shakirin G, Baeßler B, Thiele F, Zopfs D, Große Hokamp N, et al. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. World Neurosurg. 2019;132:e366-e390. doi:10.1016/j.wneu.2019.08.148.

46. Lu Y, Liu L, Luan S, Xiong J, Geng D, Yin B. The diagnostic value of texture analysis in predicting WHO grades of meningiomas based on ADC maps: an attempt using decision tree and decision forest. Eur Radiol. 2019; 29(3):1318-1328. doi:10.1007/s00330-018-5632-7.

47. Yan PF, Yan L, Hu TT, Xiao DD, Zhang Z, Zhao HY, et al. The Potential Value of Preoperative MRI Texture and Shape Analysis in Grading Meningiomas: A Preliminary Investigation. Transl Oncol. 2017;10(4):570-577. doi:10.1016/j.tranon.2017.04.006.

48. Chen C, Guo X, Wang J, Guo W, Ma X, Xu J. The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study. Front Oncol. 2019;9:1338. Published 2019 Dec 6. doi:10.3389/fonc.2019.01338.

49. Ke C, Chen H, Lv X, Li H, Zhang Y, Chen M, et al. Differentiation Between Benign and Nonbenign Meningiomas by Using Texture Analysis From Multiparametric MRI. J Magn Reson Imaging. 2020;51(6):1810-1820. doi:10.1002/jmri.26976.

50. Chu H, Lin X, He J, Pang P, Fan B, Lei P, et al. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade. Acad Radiol. 2021;28(5):687-693. doi:10.1016 /j.acra.2020.03.034.

51. Li X, Lu Y, Xiong J, Wang D, She D, Kuai X, et al. Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis. J Neuroradiol. 2019;46(5):281-287. doi:10.1016/j.neurad.2019.05.013.

52. Kanazawa T, Minami Y, Jinzaki M, Toda M, Yoshida K, Sasaki H. Preoperative Prediction of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Magnetic Resonance Imaging Texture Analysis. World Neurosurg. 2018;120:e1208-e1216. doi:10.1016 /j.wneu.2018.09.044.

53. He W, Xiao X, Li X, Guo Y, Guo L, Liu X, et al. Whole-tumor histogram analysis of apparent diffusion coefficient in differentiating intracranial solitary fibrous tumor/hemangiopericytoma from angiomatous meningioma. Eur J Radiol. 2019;112:186-191. doi:10.1016/j.ejrad.2019.01.023.

54. Nagano H, Sakai K, Tazoe J, Yasuike M, Akazawa K, Yamada K. Whole-tumor histogram analysis of DWI and QSI for differentiating between meningioma and schwannoma: a pilot study. Jpn J Radiol. 2019;37(10):694-700. doi:10.1007/s11604-019-00862-y.

55. Gu H, Zhang X, di Russo P, Zhao X, Xu T. The Current State of Radiomics for Meningiomas: Promises and Challenges. Front Oncol. 2020;10:567736. Published 2020 Oct 27. doi:10.3389 /fonc.2020.567736.

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The author declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors

Article received: 20.04.2022.  Accepted for publication: 25.05.2022

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2767350
Today
Yesterday
This week
Last week
This month
Last month
For all time
296
2948
25438
25438
75093
75709
2767350

Forecast today
2736


Your IP:216.73.216.115