О ЖУРНАЛЕ

Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.

Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.

Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.

Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.

Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.

Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.

С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.

Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.

Медицинская радиология и радиационная безопасность. 2025. Том 70. № 2

DOI:10.33266/1024-6177-2025-70-2-16-22

С.А. Абдуллаев1, 2, 3, Д.В. Фомина1, 3, В.О. Менухов1, 2, М.В. Душенко1,
А.В. Точиленко4, Т.П. Калинин5, Э.В. Евдокимовский2

ИЗМЕНЕНИЕ КОПИЙНОСТИ И ЭКСПРЕСИИ ГЕНОВ мтДНК
В РАЗЛИЧНЫХ ТКАНЯХ МЫШЕЙ ПРИ ЛОКАЛЬНОМ ОБЛУЧЕНИИ ГОЛОВНОГО МОЗГА

1 Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, Москва

2 Институт теоретической и экспериментальной биофизики РАН, Пущино

3 Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России, Москва

4 Национальный исследовательский ядерный университет “МИФИ”, Москва

5 Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва

Контактное лицо: Серажутдин Абдуллаевич Абдуллаев, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

РЕФЕРАТ

Цель: Оценить изменение копийности и экспрессии генов мтДНК в различных тканях мышей, подвергшихся локальному облучению головного мозга.

Материал и методы: В исследовании использовались самцы мышей линии Balb/c двухмесячного возраста. Рентгеновскому облучению в дозе 5 Гр (мощность 2,5 Гр/мин) подвергалась только голова мыши. После извлечения ткани гомогенизировались на льду, после чего масса гомогената разделялась на две части для выделения нуклеиновых кислот. Жидкая кровь собиралась отдельно, после чего ядросодержащие клетки крови разделялись на фракции гранулоцитов и моноцитов методом дифференциального центрифугирования в градиенте плотности диаколла. Оценка общего числа копий мтДНК и экспрессии генов проводилась методом ПЦР в реальном времени.

Результаты: Показано, что в ядросодержащих клетках крови после облучения повышается относительное количество транскриптов митохондриального гена АТР6. В гранулоцитах этот эффект выражен намного сильнее, чем в моноцитах. В эти же самые сроки количество митохондриальной ДНК в ядросодержащих клетках крови снижается относительно контрольного уровня в 2–3 раза.
В головном мозге, подвергшемся облучению, также наблюдается увеличение относительного количества транскриптов мтДНК примерно в 3 раза по сравнению с контролем. В органах, не подвергшихся облучению (сердце, печень, селезенка), наблюдается такой же эффект, что и в головном мозге, а именно, увеличение относительного количества транскриптов мтДНК. Число копий самой мтДНК в клетках головного мозга, после резкого повышения через сутки после облучения, резко снижается и остается таким до самого окончания эксперимента через 30 сут. В клетках печени и сердца происходит противоположный процесс, а именно, значительное увеличение числа копий мтДНК, с максимумом на 14–21 сут с момента облучения.

Заключение: Таким образом, полученные результаты позволяют говорить о том, что наблюдаемые изменения скорее всего обусловлены возникновением «эффекта свидетеля», возникшего после локального облучения головного мозга рентгеновским излучением в дозе 5 Гр.

Ключевые слова: мтДНК, эффект свидетеля, окислительный стресс, рентгеновское облучение, головной мозг, мыши

Для цитирования: Абдуллаев С.А., Фомина Д.В., Менухов В.О., Душенко М.В., Точиленко А.В., Калинин Т.П., Евдокимовский Э.В. Изменение копийности и экспресии генов мтднк в различных тканях мышей при локальном облучении головного мозга // Медицинская радиология и радиационная безопасность. 2025. Т. 70. № 2. С. 16–22. DOI:10.33266/1024-6177-2025-70-2-16-22

 

Список литературы

1. Pant G.S., Kamada N. Chromosome Aberrations in Normal Leukocytes Induced by the Plasma of Exposed Individuals. J Med Sci. 1977;26;2-3:149-154.

2. Hollowell J.G., Littlefeld L.G. Chromosome Damage Induced by Plasma of X-Rayed Patients: an Indirect Effect of X-Ray. Proc Soc Exp Biol Med. 1968;129;1:240-244. doi: 10.3181/00379727-129-33295.

3. Littlefeld L.G., Hollowell Jr J.G., Pool Jr W.H. Chromosomal Aberrations Induced by Plasma from Irradiated Patients: an Indirect Effect of X Radiation. Further Observations and Studies of a Control Population. Radiology. 1969;93;4:879-886. doi: 10.1148/93.4.879.

4. Marozik P., Mothersill C., Seymour C.B., Mosse I., Melnov S. Bystander Effects Induced by Serum from Survivors of the Chernobyl Accident. Exp Hematol. 2007;35;4-1:55-63. doi: 10.1016/j.exphem.2007.01.029.

5 Emerit I., Quastel M., Goldsmith J., Merkin L., Levy A., Cernjavski L., et al. Clastogenic Factors in the Plasma of Children Exposed at Chernobyl. Mutat Res. 1997;373;1:47-54. doi: 10.1016/s0027-5107(96)00187-x.

6. Gemignani F., Ballardin M., Maggiani F., Rossi A.M., Antonelli A., Barale R. Chromosome Aberrations in Lymphocytes and Clastogenic Factors in Plasma Detected in Belarus Children 10 Years after Chernobyl Accident. Mutat Res. 1999;446;2:245-253. doi: 10.1016/s1383-5718(99)00194-1.

7. Nagasawa H., Little J.B. Induction of Sister Chromatid Exchanges by Extremely Low Doses of Alpha-Particles. Cancer Res. 1992;52;22:6394-6.

8. Ghosh G. Radiation-Induced Bystander Effect and Its Possible Countermeasures. J Cell Signal. 2023;4;1:13-20. doi: 10.33696/Signaling.4.086.

9. Gilbert A., Payet V., Bernay B., Chartier-Garcia E., Testard I., Candéias S.M., Chevalier F. Label-Free Direct Mass Spectrometry Analysis of the Bystander Effects Induced in Chondrocytes by Chondrosarcoma Cells Irradiated with X-rays and Carbon Ions. Front Biosci (Landmark Ed). 2022;27;9:277. doi: 10.31083/j.fbl2709277.

10. Vasilyeva I.N. Low-Molecular-Weight DNA in Blood Plasma as an Index of the Influence of Ionizing Radiation. Ann N Y Acad Sci. 2001;945:221-8. doi: 10.1111/j.1749-6632.2001.tb03889.x.

11. Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA Damage: Mechanisms, Mutation, and Disease. FASEB J. 2003;17;10:1195-1214. doi: 10.1096/fj.02-0752rev.

12. Ermakov A.V., Konkova M.S., Kostyuk S.V., Smirnova T.D., Malinovskaya E.M., Efremova L.V., Veiko N.N. An Extracellular DNA Mediated Bystander Effect Produced from Low Dose Irradiated Endothelial Cells. Mutat Res. 2011;712;1-2:1-10. doi: 10.1016/j.mrfmmm.2011.03.002.

13. Randhawa A.K., Hawn T.R. Toll-Like Receptors: their Roles in Bacterial Recognition and Respiratory Infections. Expert Rev Anti Infect Ther. 2008;6;4:479-495. doi: 10.1586/14787210.6.4.479.

14. Taanman J.W. The Mitochondrial Genome: Structure, Transcription, Translation and Replication. Biochim Biophys Acta. 1999;1410;2:103-123. doi: 10.1016/s0005-2728(98)00161-3.

15. Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., et al. Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury. Nature. 2010;464;7285:104-107. doi: 10.1038/nature08780.

16. Liu Q., Wu J., Zhang X., Li X., Wu X., Zhao Y., Ren J. Circulating Mitochondrial DNA-Triggered Autophagy Dysfunction Via STING Underlies Sepsis-Related Acute Lung Injury. Cell Death Dis. 2021;12;7:673. doi: 10.1038/s41419-021-03961-9.

17. Mothersill C., Seymour C. Radiation-Induced Bystander Effects: Past History and Future Directions. Radiat Res. 2001;155;6:759-67. doi: 10.1667/0033-7587(2001)155[0759:ribeph]2.0.co;2.

18. Nikjoo H., Khvostunov I.K. Biophysical Model of the Radiation-Induced Bystander Effect. Int J Radiat Biol. 2003;79;1:43-52.

19. Nikjoo H., Khvostunov I.K. A Theoretical Approach to the Role and Critical Issues Associated with Bystander Effect in Risk Estimation. Hum Exp Toxicol. 2004;23;2:81-6. doi: 10.1191/0960327104ht422oa.

20. Azzam E.I., De Toledo S.M., Spitz D.R., Little J.B. Oxidative Metabolism Modulates Signal Transduction and Micronucleus Formation in Bystander Cells from Alpha-Particle-Irradiated Normal Human Fibroblast Cultures. Cancer Res. 2002;62;19:5436-42.

21. Matsumoto H., Hamada N., Takahashi A., Kobayashi Y., Ohnishi T. Vanguards of Paradigm Shift in Radiation Biology: Radiation-Induced Adaptive and Bystander Responses. J Radiat Res. 2007;48;2:97-106. doi: 10.1269/jrr.06090.

22. Matsumoto H., Tomita M., Otsuka K., Hatashita M., Hamada N. Nitric Oxide is a Key Molecule Serving as a Bridge between Radiation-Induced Bystander and Adaptive Responses. Curr Mol Pharmacol. 2011;4;2:126-34. doi: 10.2174/1874467211104020126.

23. Morgan W.F. Communicating Non-Targeted Effects of Ionizing Radiation to Achieve Adaptive Homeostasis in Tissues. Curr Mol Pharmacol. 2011;4;2:135-40.

24. Ermakov A.V., Kon’kova M.S., Kostyuk S.V., Ershova E.S., Egolina N.A., Veĭko N.N. Extracellular DNA Fragments from Culture Medium of Low-Dose Irradiated Human Lymphocyte Trigger Instigating of the Oxidative Stress and the Adaptive Response in Non-Irradiated Bystander Lymphocytes. Radiats Biol Radioecol. 2008;48;5:553-64.

25. Kostyuk S.V., Ermakov A.V., Alekseeva A.Yu., Smirnova T.D., Glebova K.V., Efremova L.V., Baranova A., Veiko N.N. Role of Extracellular DNA Oxidative Modification in Radiation Induced Bystander Effects in Human Endotheliocytes. Mutat Res. 2012;729;1-2:52-60. doi: 10.1016/j.mrfmmm.2011.09.005.

26. Wu Z., Oeck S., West A.P., Mangalhara K.C., Sainz A.G., Newman L.E., et al. Mitochondrial DNA Stress Signalling Protects the Nuclear Genome. Nat Metab. 2019;1;12:1209-1218. doi: 10.1038/s42255-019-0150-8.

 

  PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Работа выполнена при поддержке Российского научного фонда (проект № 24-24-00446).

Участие авторов. Cтатья подготовлена с равным участием авторов.

Поступила: 20.12.2024. Принята к публикации: 25.01.2025.

 

Адрес редакции журнала

 

123098, Москва, ул. Живописная, 46 Телефон: (499) 190-95-51. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Местонахождение журнала

Посещаемость

2758855
Сегодня
Вчера
На этой нед.
На прошл. нед.
В этом мес.
В прошл. мес.
За все время
1586
3035
17239
18409
66598
75709
2758855

Прогноз на сегодня
2112


Ваш IP:216.73.216.231