О ЖУРНАЛЕ

Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.

Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.

Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.

Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.

Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.

Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.

С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.

Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.

Медицинская радиология и радиационная безопасность. 2023. Том 68. № 2

DOI: 10.33266/1024-6177-2023-68-2-5-10

Л. Алхаддад1,2, А.Н. Осипов1,3, С.В. Леонов1,4

РАДИАЦИОННО-ИНДУЦИРОВАННОЕ
ПРЕЖДЕВРЕМЕННОЕ СТАРЕНИЕ ОПУХОЛЕВЫХ КЛЕТОК

1Московский физико-технический институт (Национальный исследовательский университет), Московская облаcть, Долгопрудный

2Университет Дамаска, Дамаск, Сирия

3Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России, Москва

4Институт биофизики клетки РАН, Московская область, Пущино


Контактное лицо: Андреян Николаевич Осипов, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

СОДЕРЖАНИЕ

Введение

Факторы и механизмы секреторного фенотипа опухолевых клеток, ассоциированного со старением

Морфологические и транскрипционные сигнатуры секреторного фенотипа опухолевых клеток, ассоциированного со старением

Радиационно-индуцированные сигнальные пути, ассоциированные с преждевременным старением

Заключение

Ключевые слова: ионизирующее излучение, преждевременное старение, стресс, опухолевые клетки

Для цитирования: Алхаддад Л., Осипов А.Н., Леонов С.В. Радиационно-индуцированное преждевременное старение опухолевых клеток // Медицинская радиология и радиационная безопасность. 2023. Т. 68. № 2. С. 5–10. DOI: 10.33266/1024-6177-2023-68-2-5-10


 

Список литературы

1. Roninson I.B. Tumor Cell Senescence in Cancer Treatment. Cancer Research. 2003;63;11:2705-2715. 

2. Olovnikov A.M. [Principle of Marginotomy in Template Synthesis of Polynucleotides]. Doklady Akademii Nauk SSSR. 1971;201;6:1496-1499. 

3. Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W. Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a. Cell. 1997;88;5:593-602. doi: 10.1016/s0092-8674(00)81902-9.

4. Fridlyanskaya I., Alekseenko L., Nikolsky N. Senescence as a General Cellular Response to Stress: A Mini-Review. Experimental Gerontology. 2015;72:124-128. doi: 10.1016/j.exger.2015.09.021.

5. Suzuki M., Boothman D.A. Stress-Induced Premature Senescence (SIPS)--Influence of SIPS on Radiotherapy. Journal of Radiation Research. 2008;49;2:105-112. doi: 10.1269/jrr.07081.

6. Aliper A.M., Bozdaganyan M.E., Orekhov P.S., Zhavoronkov A., Osipov A.N. Replicative and Radiation-Induced Aging: a Comparison of Gene Expression Profiles. Aging (Albany NY). 2019;11;8:2378-2387. doi: 10.18632/aging.101921.

7. Crompton N.E. Telomeres, Senescence and Cellular Radiation Response. Cellular and Molecular Life Sciences: CMLS. 1997;53;7:568-575. doi: 10.1007/s000180050073.

8. Sabbatinelli J., Prattichizzo F., Olivieri F., Procopio A.D., Rippo M.R., Giuliani A. Where Metabolism Meets Senescence: Focus on Endothelial Cells. Frontiers in Physiology. 2019;10:1523. doi: 10.3389/fphys.2019.01523.

9. Coppe J.P., Patil C.K., Rodier F., Sun Y., Munoz D.P., Goldstein J., et al. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biology. 2008;6;12:2853-2868. doi: 10.1371/journal.pbio.0060301.

10. Byun H.O., Lee Y.K., Kim J.M., Yoon G. From Cell Senescence to Age-Related Diseases: Differential Mechanisms of Action of Senescence-Associated Secretory Phenotypes. BMB Reports. 2015;48;10:549-558. doi: 10.5483/bmbrep.2015.48.10.122.

11. Kuilman T., Michaloglou C., Vredeveld L.C., Douma S., van Doorn R., Desmet C.J., et al. Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network. Cell. 2008;133;6:1019-31. doi: 10.1016/j.cell.2008.03.039.

12. Acosta J.C., O’Loghlen A., Banito A., Guijarro M.V., Augert A., Raguz S., et al. Chemokine Signaling Via the CXCR2 Receptor Reinforces Senescence. Cell. 2008;133;6:1006-1018. doi: 10.1016/j.cell.2008.03.038.

13. Hornebeck W., Maquart F.X. Proteolyzed Matrix as a Template for the Regulation of Tumor Progression. Biomedicine & Pharmacotherapy. 2003;57;5-6:223-230. doi: 10.1016/s0753-3322(03)00049-0.

14. Brew K., Dinakarpandian D., Nagase H. Tissue Inhibitors of Metalloproteinases: Evolution, Structure and Function. Biochimica et Biophysica Acta. 2000;1477;1-2:267-283. doi: 10.1016/s0167-4838(99)00279-4.

15. Coppe J.P., Desprez P.Y., Krtolica A., Campisi J. The Senescence-Associated Secretory Phenotype: the Dark Side of Tumor Suppression. Annual Review of Pathology. 2010;5:99-118. doi: 10.1146/annurev-pathol-121808-102144.

16. d’Adda di Fagagna F., Reaper P.M., Clay-Farrace L., Fiegler H., Carr P., Von Zglinicki T., et al. A DNA Damage Checkpoint Response in Telomere-Initiated Senescence. Nature. 2003;426;6963:194-198. doi: 10.1038/nature02118.

17. Mikula-Pietrasik J., Niklas A., Uruski P., Tykarski A., Ksiazek K. Mechanisms and Significance of Therapy-Induced and Spontaneous Senescence of Cancer Cells. Cellular and Molecular Life Sciences: CMLS. 2020;77;2:213-229. doi: 10.1007/s00018-019-03261-8.

18. Coppe J.P., Kauser K., Campisi J., Beausejour C.M. Secretion of Vascular Endothelial Growth Factor by Primary Human Fibroblasts at Senescence. The Journal of Biological Chemistry. 2006;281;40:29568-2956874. doi: 10.1074/jbc.M603307200.

19. Taddei M.L., Cavallini L., Comito G., Giannoni E., Folini M., Marini A., et al. Senescent Stroma Promotes Prostate Cancer Progression: the Role of miR-210. Molecular Oncology. 2014;8;8:1729-1746. doi: 10.1016/j.molonc.2014.07.009.

20. Kuo P.L., Shen K.H., Hung S.H., Hsu Y.L. CXCL1/GROalpha Increases Cell Migration and Invasion of Prostate Cancer by Decreasing Fibulin-1 Expression Through NF-kappaB/HDAC1 Epigenetic Regulation. Carcinogenesis. 2012;33;12:2477-87. doi: 10.1093/carcin/bgs299.

21 Rodier F., Coppe J.P., Patil C.K., Hoeijmakers W.A., Munoz D.P., Raza S.R., et al. Persistent DNA damage Signalling Triggers Senescence-Associated Inflammatory Cytokine Secretion. Nature Cell Biology. 2009;11;8:973-979. doi: 10.1038/ncb1909.

22. Pazolli E., Alspach E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A. Chromatin Remodeling Underlies the Senescence-Associated Secretory Phenotype of Tumor Stromal Fibroblasts that Supports Cancer Progression. Cancer Research. 2012;72;9:2251-2261. doi: 10.1158/0008-5472.CAN-11-3386.

23. Castillo V., Valenzuela R., Huidobro C., Contreras H.R., Castellon E.A. Functional Characteristics of Cancer Stem Cells and Their Role in Drug Resistance of Prostate Cancer. International Journal of Oncology. 2014;45;3:985-994. doi:
10.3892/ijo.2014.2529.

24. Laberge R.M., Sun Y., Orjalo A.V., Patil C.K., Freund A., Zhou L., et al. MTOR Regulates the Pro-Tumorigenic Senescence-Associated Secretory Phenotype by Promoting IL1A Translation. Nature Cell Biology. 2015;17;8:1049-1061. doi: 10.1038/ncb3195.

25. Herranz N., Gallage S., Mellone M., Wuestefeld T., Klotz S., Hanley C.J., et al. mTOR Regulates MAPKAPK2 Translation to Control the Senescence-Associated Secretory Phenotype. Nature Cell Biology. 2015;17;9:1205-1217. doi: 10.1038/ncb3225.

26. Narita M., Young A.R., Arakawa S., Samarajiwa S.A., Nakashima T., Yoshida S., et al. Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes. Science. 2011;332;6032:966-970. doi: 10.1126/science.1205407.

27. Chien Y., Scuoppo C., Wang X., Fang X., Balgley B., Bolden J.E., et al. Control of the Senescence-Associated Secretory Phenotype by NF-kappaB Promotes Senescence and Enhances Chemosensitivity. Genes & Development. 2011;25;20:2125-2136. doi: 10.1101/gad.17276711.

28. Wiley C.D., Velarde M.C., Lecot P., Liu S., Sarnoski E.A., Freund A., et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metabolism. 2016;23;2:303-314. doi: 10.1016/j.cmet.2015.11.011.

29. Ksiazek K., Korybalska K., Jorres A., Witowski J. Accelerated Senescence of Human Peritoneal Mesothelial Cells Exposed to High Glucose: the Role of TGF-beta1. Laboratory Investigation; a Journal of Technical Methods and Pathology. 2007;87;4:345-356. doi: 10.1038/labinvest.3700519.

30. Chondrogianni N., Stratford F.L., Trougakos I.P., Friguet B., Rivett A.J., Gonos E.S. Central Role of the Proteasome in Senescence and Survival of Human Fibroblasts: Induction of a Senescence-Like Phenotype Upon Its Inhibition and Resistance to Stress Upon Its Activation. The Journal of Biological Chemistry. 2003;278;30:28026-28037. doi: 10.1074/jbc.M301048200.

31. Keyes W.M., Wu Y., Vogel H., Guo X., Lowe S.W., Mills A.A. p63 Deficiency Activates a Program of Cellular Senescence and Leads to Accelerated Aging. Genes & Development. 2005;19;17:1986-1999. doi: 10.1101/gad.342305.

32. Stein G.H., Drullinger L.F., Soulard A., Dulic V. Differential Roles for Cyclin-Dependent Kinase Inhibitors p21 and p16 in the Mechanisms of Senescence and Differentiation in Human Fibroblasts. Mol. Cell. Biol. 1999;19;3:2109-2117. doi: 10.1128/MCB.19.3.2109.

33. Macip S., Igarashi M., Fang L., Chen A., Pan Z.Q., Lee S.W., et al. Inhibition of p21-Mediated ROS Accumulation Can Rescue p21-Induced Senescence. EMBO J. 2002;21;9:2180-2188. doi: 10.1093/emboj/21.9.2180.

34. Bae G.U., Seo D.W., Kwon H.K., Lee H.Y., Hong S., Lee Z.W., et al. Hydrogen Peroxide Activates p70(S6k) Signaling Pathway. The Journal of Biological Chemistry. 1999;274;46:32596-32602. doi: 10.1074/jbc.274.46.32596.

35. Radisavljevic Z.M., Gonzalez-Flecha B. TOR Kinase and Ran Are Downstream from PI3K/Akt in H2O2-Induced Mitosis. Journal of Cellular Biochemistry. 2004;91;6:1293-1300. doi: 10.1002/jcb.20037.

36. Krouwer V.J., Hekking L.H., Langelaar-Makkinje M., Regan-Klapisz E., Post J.A. Endothelial Cell Senescence is Associated with Disrupted Cell-Cell Junctions and Increased Monolayer Permeability. Vascular Cell. 2012;4;1:12. doi: 10.1186/2045-824X-4-12.

37. Ksiazek K., Piatek K., Witowski J. Impaired Response to Oxidative Stress in Senescent Cells May Lead to Accumulation of DNA Damage in Mesothelial Cells from Aged Donors. Biochemical and Biophysical Research Communications. 2008;373;2:335-339. doi: 10.1016/j.bbrc.2008.06.026.

38. Sidler C., Kovalchuk O., Kovalchuk I. Epigenetic Regulation of Cellular Senescence and Aging. Frontiers in Genetics. 2017;8:138. doi: 10.3389/fgene.2017.00138.

39. Calio A., Zamo A., Ponzoni M., Zanolin M.E., Ferreri A.J., Pedron S., et al. Cellular Senescence Markers p16INK4a and p21CIP1/WAF Are Predictors of Hodgkin Lymphoma Outcome. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21;22:5164-5172. doi: 10.1158/1078-0432.CCR-15-0508.

40. Gorgoulis V., Adams P.D., Alimonti A., Bennett D.C., Bischof O., Bishop C., et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179;4:813-827. doi: 10.1016/j.cell.2019.10.005.

41. Evangelou K., Lougiakis N., Rizou S.V., Kotsinas A., Kletsas D., Munoz-Espin D., et al. Robust, Universal Biomarker Assay to Detect Senescent Cells in Biological Specimens. Aging Cell. 2017;16;1:192-197. doi: 10.1111/acel.12545.

42. Hansel C., Jendrossek V., Klein D. Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. International Journal of Molecular Sciences. 2020;21;9. doi: 10.3390/ijms21093279.

43. Gire V., Roux P., Wynford-Thomas D., Brondello J.M., Dulic V. DNA Damage Checkpoint Kinase Chk2 Triggers Replicative Senescence. The EMBO Journal. 2004;23;13:2554-2563. doi: 10.1038/sj.emboj.7600259.

44. Naka K., Tachibana A., Ikeda K., Motoyama N. Stress-Induced Premature Senescence in hTERT-Expressing Ataxia Telangiectasia Fibroblasts. The Journal of Biological Chemistry. 2004;279;3:2030-2037. doi: 10.1074/jbc.M309457200.

45. Sikora E., Czarnecka-Herok J., Bojko A., Sunderland P. Therapy-Induced Polyploidization and Senescence: Coincidence or Interconnection? Seminars in Cancer Biology. 2022;81:83-95. doi: 10.1016/j.semcancer.2020.11.015.

46. Wang Q., Wu P.C., Dong D.Z., Ivanova I., Chu E., Zeliadt S., et al. Polyploidy Road to Therapy-Induced Cellular Senescence and Escape. International Journal of Cancer. 2013;132;7:1505-1515. doi: 10.1002/ijc.27810.

47. Leong W.F., Chau J.F., Li B. p53 Deficiency Leads to Compensatory Up-Regulation of p16INK4a. Molecular Cancer Research: MCR. 2009;7;3:354-360. doi: 10.1158/1541-7786.MCR-08-0373.

48. Han Z., Wei W., Dunaway S., Darnowski J.W., Calabresi P., Sedivy J., et al. Role of p21 in Apoptosis and Senescence of Human Colon Cancer Cells Treated with Camptothecin. The Journal of Biological Chemistry. 2002;277;19:17154-17160. doi: 10.1074/jbc.M112401200.

49. Alani R.M., Young A.Z., Shifflett C.B. Id1 Regulation of Cellular Senescence Through Transcriptional Repression of p16/Ink4a. Proceedings of the National Academy of Sciences of the United States of America. 2001;98;14:7812-7816. doi: 10.1073/pnas.141235398.

50. Liu D., Hornsby P.J. Senescent Human Fibroblasts Increase the Early Growth of Xenograft Tumors Via Matrix Metalloproteinase Secretion. Cancer Research. 2007;67;7:3117-3126. doi: 10.1158/0008-5472.CAN-06-3452.

51. Mikula-Pietrasik J., Sosinska P., Maksin K., Kucinska M.G., Piotrowska H., Murias M., et al. Colorectal Cancer-Promoting Activity of the Senescent Peritoneal Mesothelium. Oncotarget. 2015;6;30:29178-29195. doi: 10.18632/oncotarget.4932.

52. Wang T., Notta F., Navab R., Joseph J., Ibrahimov E., Xu J., et al. Senescent Carcinoma-Associated Fibroblasts Upregulate IL8 to Enhance Prometastatic Phenotypes. Molecular Cancer Research: MCR. 2017;15;1:3-14. doi: 10.1158/1541-7786.MCR-16-0192.

53. Mikula-Pietrasik J., Sosinska P., Naumowicz E., Maksin K., Piotrowska H., Wozniak A., et al. Senescent Peritoneal Mesothelium Induces a Pro-Angiogenic Phenotype in Ovarian Cancer Cells in Vitro and in a Mouse Xenograft Model in Vivo. Clinical & Experimental Metastasis. 2016;33;1:15-27. doi: 10.1007/s10585-015-9753-y.

54. Ruhland M.K., Loza A.J., Capietto A.H., Luo X., Knolhoff B.L., Flanagan K.C., et al. Stromal Senescence Establishes an Immunosuppressive Microenvironment that Drives Tumorigenesis. Nature Communications. 2016;7:11762. doi: 10.1038/ncomms11762.

55. Rovillain E., Mansfield L., Caetano C., Alvarez-Fernandez M., Caballero O.L., Medema R.H., et al. Activation of Nuclear Factor-Kappa B Signalling Promotes Cellular Senescence. Oncogene. 2011;30;20:2356-2366. doi: 10.1038/onc.2010.611.

56. Mirzayans R., Andrais B., Kumar P., Murray D. Significance of Wild-Type p53 Signaling in Suppressing Apoptosis in Response to Chemical Genotoxic Agents: Impact on Chemotherapy Outcome. International Journal of Molecular Sciences. 2017;18;5. doi: 10.3390/ijms18050928.

57. Schmitt C.A. Cellular Senescence and Cancer Treatment. Biochimica et Biophysica Acta. 2007;1775;1:5-20. doi: 10.1016/j.bbcan.2006.08.005.

58. Бородкина А., Дерябин П., Грюкова А., Никольский Н. “Социальная жизнь” стареющих клеток: что такое SASP и зачем его изучать? // Acta Naturae. 2018. Т.10, № 1. С. 4-15. [Borodkina A., Deryabin P., Gryukova A., Nikolskiy N.»Social Life» of Senescent Cells: what Is SASP and why Study It? Acta Naturae. 2018;10;1:4-15 (In Russ.)].

59. Yahyapour R., Salajegheh A., Safari A., Amini P., Rezaeyan A.., Amraee A, et al. Radiation-Induced Non-Targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. Journal of Biomedical Physics & Engineering. 2018;8;4:435-446. 

60. Luo H., Yount C., Lang H., Yang A., Riemer E.C., Lyons K., et al. Activation of p53 with Nutlin-3a Radiosensitizes Lung Cancer Cells Via Enhancing Radiation-Induced Premature Senescence. Lung Cancer. 2013;81;2:167-173. doi: 10.1016/j.lungcan.2013.04.017.

61. He X., Yang A., McDonald D.G., Riemer E.C., Vanek K.N., Schulte B.A., et al. MiR-34a Modulates Ionizing Radiation-Induced Senescence In Lung Cancer Cells. Oncotarget. 2017;8;41:69797-69807. doi: 10.18632/oncotarget.19267.

62. Mirzayans R., Scott A., Cameron M., Murray D. Induction of Accelerated Senescence by Gamma Radiation In Human Solid Tumor-Derived Cell Lines Expressing Wild-Type TP53. Radiation Research. 2005;163;1:53-62. doi: 10.1667/rr3280.

63. Mirzayans R., Andrais B., Scott A., Wang Y.W., Kumar P., Murray D. Multinucleated Giant Cancer Cells Produced in Response to Ionizing Radiation Retain Viability and Replicate Their Genome. International Journal of Molecular Sciences. 2017;18;2. doi: 10.3390/ijms18020360.

64. Liao E.C., Hsu Y.T., Chuah Q.Y., Lee Y.J., Hu J.Y., Huang T.C., et al. Radiation Induces Senescence and a Bystander Effect Through Metabolic Alterations. Cell Death & Disease. 2014;5:e1255. doi: 10.1038/cddis.2014.220.

65. Xu J., Patel N.H., Saleh T., Cudjoe E.K., Jr., Alotaibi M., Wu Y., et al. Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiation Research. 2018;190;5:538-557. doi: 10.1667/RR15099.1.

66. Jallepalli P.V., Waizenegger I.C., Bunz F., Langer S., Speicher M.R., Peters J.M., et al. Securin is Required for Chromosomal Stability in Human Cells. Cell. 2001;105;4:445-457. doi: 10.1016/s0092-8674(01)00340-3.

67. Tfelt-Hansen J., Kanuparthi D., Chattopadhyay N. The Emerging Role of Pituitary Tumor Transforming Gene in Tumorigenesis. Clinical Medicine & Research. 2006;4;2:130-137. doi: 10.3121/cmr.4.2.130.

68. Jeon H.Y., Kim J.K., Ham S.W., Oh S.Y., Kim J., Park J.B., et al. Irradiation Induces Glioblastoma Cell Senescence and Senescence-Associated Secretory Phenotype. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Me-
dicine. 2016;37;5:5857-5867. doi: 10.1007/s13277-015-4439-2.

69. Lee J.J., Kim B.C., Park M.J., Lee Y.S., Kim Y.N., Lee B.L., et al. PTEN Status Switches Cell Fate between Premature Senescence and Apoptosis in Glioma Exposed to Ionizing Radiation. Cell Death and Differentiation. 2011;18;4:666-677. doi: 10.1038/cdd.2010.139.``

 

 PDF (RUS) Полная версия статьи

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Работа выполнена при финансовой поддержке гранта РФФИ №. 20-34-90035.

Участие авторов. Л. Алхаддад – сбор и анализ литературного материала, написание текста. А.Н. Осипов и С.В. Леонов – разработка концепции и научное редактирование.

Поступила: 20.11.2022. Принята к публикации: 25.01.2023.

 

Адрес редакции журнала

 

123098, Москва, ул. Живописная, 46 Телефон: (499) 190-95-51. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Местонахождение журнала

Посещаемость

2765666
Сегодня
Вчера
На этой нед.
На прошл. нед.
В этом мес.
В прошл. мес.
За все время
1560
4471
24050
18409
73409
75709
2765666

Прогноз на сегодня
3120


Ваш IP:216.73.216.72