О ЖУРНАЛЕ

Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.

Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.

Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.

Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.

Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.

Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.

С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.

Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.

Медицинская радиология и радиационная безопасность. 2023. Том 68. № 6

DOI:10.33266/1024-6177-2023-68-6-27-41

И.Г. Шацкий1, П.С. Дружинина1, Ю.Н. Капырина2, М.В. Осипов3

ЭФФЕКТИВНЫЕ ДОЗЫ ДЕТЕЙ ПРИ ПРОВЕДЕНИИ РЕНТГЕНОДИАГНОСТИЧЕСКИХ ИССЛЕДОВАНИЙ: ЛИТЕРАТУРНЫЙ ОБЗОР

1 Санкт-Петербургский научно-исследовательский институт радиационной гигиены
им. профессора П.В. Рамзаева Роспотребнадзора, Санкт-Петербург

2 Санкт-Петербургский государственный педиатрический медицинский университет
Минздрава РФ, Санкт-Петербург

3 Южно-Уральский институт биофизики ФМБА России, Озерск

Контактное лицо: Полина Сергеевна Дружинина, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

Содержание: 

Методы лучевой диагностики получили широкое распространение не только для диагностики взрослых пациентов, но и детей. Дети являются самой радиочувствительной группой населения, которая имеет более высокий риск развития отдаленных эффектов воздействия ионизирующего излучения по сравнению со взрослыми. Поэтому контроль уровней облучения педиатрических пациентов имеет приоритетное значение. На сегодняшний день в зарубежных странах вопросам радиационной безопасности детей посвящено большое количество публикаций. В Российской Федерации данные вопросы рассмотрены недостаточно. В работе были проанализированы зарубежные и отечественные публикации, посвященные уровням облучения детей при проведении рентгенографических, интервенционных и компьютерно-томографических исследований (далее – КТ-исследований). В первую очередь рассматривались публикации, содержавшие количественную характеристику уровней облучения по величине эффективной дозы (далее – ЭД). Значения эффективных доз, представленных в публикациях, были пересчитаны в соответствии с делением возрастных групп, принятым в Российской Федерации для удобства сравнения значений между собой: 0‒0,5; 0,5‒3; 3‒8; 8‒13; 13‒18 лет. В статье представлены средние взвешенные эффективные дозы для детей всех возрастных групп для разных видов рентгенографических, интервенционных и КТ-исследований. По данным литературных источников в Российской Федерации средние взвешенные эффективные дозы детей в среднем для всех видов лучевой диагностики ниже, чем в зарубежных странах. Для обеспечения радиационной защиты детей в Российской Федерации при проведении рентгенографических, интервенционных и КТ-исследований, необходимо повышать достоверность информации об уровнях облучения детей, путем совершенствования систем сбора данных, контроля и учета индивидуальных доз, повышения уровня осведомленности специалистов.

Ключевые слова: дети, эффективные дозы, рентгенодиагностика, рентгенографические исследования, КТ-исследования, интервенционная радиология

Для цитирования: Шацкий И.Г., Дружинина П.С., Капырина Ю.Н., Осипов М.В. Эффективные дозы детей при проведении рентгенодиагностических исследований: литературный обзор // Медицинская радиология и радиационная безопасность. 2023. Т. 68. № 6. С. 27–41. DOI:10.33266/1024-6177-2023-68-6-27-41

 

Список литературы

1. Lambert J.W., Phelps A.S., Courtier J.L., Gould R.G., MacKenzie J.D. Image Quality and Dose Optimisation for Infant CT Using a Paediatric Phantom // European Radiology. 2016. V.26, No. 5. P. 1387-95. DOI 10.1007/s00330-015-3951-5. 

2. Strauss K.J., Goske M.J., Kaste S.C., Bulas D., Frush D.P., Butler P., Morrison G., Callahan M.J., Applegate K.E. Image Gently: Ten Steps You Can Take to Optimize Image Quality and Lower CT Dose for Pediatric Patients // AJR Am. J. Roentgenol. 2010. V.194, No. 4. P. 868-873. DOI: 10.2214/AJR.09.4091. 

3. IAEA. Dosimetry in Diagnostic Radiology for Paediatric Patients. IAEA Human Health Series No. 24. Vienna. 2014. 160 p.

4. Голиков В.Ю., Водоватов А.В., Чипига Л.А., Шацкий И.Г. Оценка радиационного риска у пациентов при проведении медицинских исследований в Российской Федерации // Радиационная гигиена. 2021. Т.14, № 3. С. 56-68. https://doi.org/10.21514/1998-426X-2021-14-3-56-68. 

5. IAEA. Radiation Protection in Paediatric Radiology. Safety Reports Series No. 71. Vienna. 2013. 111 p. 

6. Thierry-Chef I., Ferro G., Le Cornet L., Dabin J., Istad T.S., Jahnen A., Lee C., Maccia C., Malchair F., Olerud H.M., Harbron R.W., Figuerola J., Hermen J., Moissonnier M., Bernier M.O., Bosch de Basea M.B., Byrnes G., Cardis E., Hauptmann M., Journy N., Kesminiene A., Meulepas J.M., Pokora R., Simon S.L. Dose Estimation for the European Epidemiological Study on Pediatric Computed Tomography (EPI-CT) // Radiation Research. 2021. V.196, No. 1. P. 74-99. doi: 10.1667/RADE-20-00231.1. 

7. Bosch de Basea M., Pearce M.S., Kesminiene A., Bernier M.O., Dabin J., Engels H., Hauptmann M., Krille L., Meulepas J.M., Struelens L., Baatout S., Kaijser M., Maccia C., Jahnen A., Thierry-Chef I., Blettner M., Johansen C., Kjaerheim K., Nordenskjöld A., Olerud H., Salotti J.A., Andersen T.V., Vrijheid M., Cardis E. EPI-CT: Design, Challenges and Epidemiological Methods of an International Study on Cancer Risk After Paediatric and Young Adult CT // J. Radiol. Prot. 2015. V.35, No. 3. P. 611-628. doi: 10.1088/0952-4746/35/3/611. 

8. Berrington de Gonzalez A., Salotti J.A., McHugh K., Little M.P., Harbron R.W., Lee C., Ntowe E., Braganza M.Z., Parker L., Rajaraman P., Stiller C., Stewart D.R., Craft A.W., Pearce M.S. Relationship Between Paediatric CT Scans and Subsequent Risk of Leukaemia and Brain Tumours: Assessment of the Impact of Underlying Conditions // British Journal of Cancer. 2016. V.14, No. 4. P. 388-394. doi: 10.1038/bjc.2015.415.

9. Pearce M.S., Salotti J.A., Little M.P., McHugh K., Lee C., Kim K.P., Howe N.L., Ronckers C.M., Rajaraman P., Sir Craft A.W., Parker L., Berrington de González A. Radiation Exposure from CT Scans in Childhood and Subsequent Risk of Leukaemia and Brain Tumours: a Retrospective Cohort Study // Lancet. 2012. V.380, No. 9840. P. 499-505. doi: 10.1016/S0140-6736(12)60815-0.

10. Mathews J.D., Forsythe A.V., Brady Z., Butler M.W., Goergen S.K., Byrnes G.B., Giles G.G., Wallace A.B., Anderson P.R., Guiver T.A., McGale P., Cain T.M., Dowty J.G., Bickerstaffe A.C., Darby S.C. Cancer Risk in 680,000 People Exposed to Computed Tomography Scans in Childhood or Adolescence: Data Linkage Study of 11 Million Australians // BMJ. 2013. No. 346. P. f2360. doi: 10.1136/bmj.f2360. 

11. Huang W.Y., Muo C.H., Lin C.Y., Jen Y.M., Yang M.H., Lin J.C., Sung F.C., Kao C.H. Paediatric Head CT Scan and Subsequent Risk of Malignancy and Benign Brain Tumour: a Nation-Wide Population-Based Cohort Study // British Journal of Cancer. 2014. V.110, No. 9. P. 2354-2360. doi: 10.1038/bjc.2014.103. 

12. Bernier M.O., Baysson H., Pearce M.S., Moissonnier M., Cardis E., Hauptmann M., Struelens L., Dabin J., Johansen C., Journy N., Laurier D., Blettner M., Le Cornet L., Pokora R., Gradowska P., Meulepas J.M., Kjaerheim K., Istad T., Olerud H., Sovik A., Bosch de Basea M., Thierry-Chef I., Kaijser M., Nordenskjöld A., Berrington de Gonzalez A., Harbron R.W., Kesminiene A. Cohort Profile: the EPI-CT Study: a European Pooled Epidemiological Study to Quantify the Risk of Radiation-Induced Cancer from Paediatric CT // International Journal of Epidemiology. 2019. V.48, No. 2. P. 379-381g. doi: 10.1093/ije/dyy231. 

13. Shore R.E., Beck H.L., Boice J.D., Caffrey E.A., Davis S., Grogan H.A., Mettler F.A., Preston R.J., Till J.E., Wakeford R., Walsh L., Dauer L.T. Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection // Journal of Radiological Protection. 2018. V.38, No. 3. P. 1217-1233. doi: 10.1088/1361-6498/aad348.

14. Walsh L., Shore R., Auvinen A., Jung T., Wakeford R. Risks from CT Scans-What Do Recent Studies Tell Us? // Journal of Radiologi-
cal Protection. 2014. V.34, No. 1. P. E1-5. doi: 10.1088/0952-4746/34/1/E1. 

15. Boice J.D.Jr. Radiation Epidemiology and Recent Paediatric Computed Tomography Studies // Ann ICRP. 2015. V.44, No. 1 Suppl. P. 236-248. doi: 10.1177/0146645315575877. 

16. Фомин Е.П., Осипов М.В., Бабинцева Н.А., Синяк Е.В. Результаты наблюдения за пациентами, обследованными на КТ и МСКТ в детском и подростковом возрасте // Российский электронный журнал лучевой диагностики. 2018. Т.8, № 1. С. 137-144. DOI:10.21569/2222-7415-2018-8-1-137-144.

17. Петряйкин А.В., Разумовский А.Ю., Ублинский М.В., Сиденко А.В., Гурьяков С.Ю., Горохов Д.В. Мультиспиральная компьютерная томография с контрастным усилением в диагностике хирургических заболеваний органов грудной полости у детей // Детская хирургия. 2013. № 4. С. 9-15. 

18. Дружинина П.С., Поздняков А.В., Капырина Ю.Н., Иванов Д.О., Петренко Ю.В., Пузырев В.Г. Сравнительная оценка эффективных доз облучения детей при проведении КТ-исследований органов грудной клетки // Радиационная гигиена. 2021. Т.14, № 3. С. 91-100. DOI: 10.21514/1998-426X-2021-14-3-91-100.

19. Капырина Ю.Н., Дружинина П.С. Оценка доз облучения детей при проведении компьютерной томографии на примере педиатрической многопрофильной клиники // Материалы конференции: Children’s Medicine of the North-West. СПб., 2021. Т.9, №1. С. 427-428.

20. Vilar-Palop J., Vilar J., Hernández-Aguado I., González-Álvarez I., Lumbreras B. Updated Effective Doses in Radiology // J. Radiol Prot. 2016. V.36, No. 4. P. 975-990. doi: 10.1088/0952-4746/36/4/975. 

21. Olgar T., Sahmaran T. Establishment of Radiation Doses For Pediatric X-Ray Examinations in a Large Pediatric Hospital in Turkey // Radiat. Prot. Dosimetry. 2017. V.176, No. 3. P. 302-308. doi: 10.1093/rpd/ncx010. 

22. Gogos K.A., Yakoumakis E.N., Tsalafoutas I.A., Makri T.K. Radiation Dose Considerations in Common Paediatric X-Ray Examinations // Pediatr Radiol. 2003. V.33, No. 4. P. 236-240. doi: 10.1007/s00247-002-0861-x. 

23. Shatskiy I., Golikov V. Paediatric Doses in St Petersburg Hospitals // Radiat Prot Dosimetry. 2015. V.165, No. 1-4. P. 199-204. doi: 10.1093/rpd/ncv066. 

24. Sorop I., Mossang D., Iacob M.R., Dadulescu E., Iacob O. Update of Diagnostic Medical and Dental X-Ray Exposures in Romania // J. Radiol. Prot. 2008. V.28, No. 4. P. 563-571. doi: 10.1088/0952-4746/28/4/008. 

25. Kiljunen T., Tietäväinen A., Parviainen T., Viitala A., Kortesniemi M. Organ Doses and Effective Doses in Pediatric Radiography: Patient-Dose Survey in Finland // Acta Radiol. 2009. V.50, No. 1. P. 114-124. doi: 10.1080/02841850802570561. 

26. Вишнякова Н.М. Референтные диагностические уровни облучения детей при рентгенологических исследованиях // Вестник Российской военно-медицинской академии. 2010. № 3. С. 170 –174.

27. Brady Z., Ramanauskas F., Cain T.M., Johnston P.N. Assessment of Paediatric CT Dose Indicators for The Purpose of Optimisation // Br. J. Radiol. 2012. V.85, No. 1019. P. 1488-1498. doi: 10.1259/bjr/28015185. 

28. Obara H., Takahashi M., Kudou K., Mariya Y., Takai Y., Kashiwakura I. Estimation of Effective Doses in Pediatric X-Ray Computed Tomography Examination // Exp. Ther. Med. 2017. V.14, No. 5. P. 4515-4520. doi: 10.3892/etm.2017.5102.

29. Mordacq C., Deschildre A., Petyt L., Santangelo T., Delvart C., Doan C., Thumerelle C. Tomodensitométrie thoracique chez L’enfant: un Examen Utile Mais Irradiant //Arch. Pediatr. 2014. V.21, No. 3. P. 279-286. doi: 10.1016/j.arcped.2013.12.021. 

30. Gudjonsdottir J., Jonsdottir A.B. Effective Dose from Pediatric CT In Iceland // Laeknabladid. 2017. V.103, No. 11. P. 489-492. doi: 10.17992/lbl.2017.11.160. 

31. Matsunaga Y., Kawaguchi A., Kobayashi K., Kobayashi M., Asada Y., Minami K., Suzuki S., Chida K. Effective Radiation Doses of CT Examinations In Japan: a Nationwide Questionnaire-Based Study // Br. J. Radiol. 2016. V.89, No. 1058. P. 20150671. doi: 10.1259/bjr.20150671. 

32. Tahmasebzadeh A., Maziyar A., Reiazi R., Kermanshahi M.S., Anijdan S.H.M,. Paydar R. Pediatric Effective Dose Assessment for Routine Computed Tomography Examinations in Tehran, Iran // J. Med. Signals Sens. 2022. V.12, No. 3. P. 227-232. doi: 10.4103/jmss.jmss_115_21. 

33. Feng S.T., Law M.W., Huang B., Ng S., Li Z.P., Meng Q.F., Khong P.L. Radiation Dose and Cancer Risk from Pediatric CT Examinations on 64-Slice CT: a Phantom Study // Eur. J. Radiol. 2010. V.76, No. 2. P. e19-23. doi: 10.1016/j.ejrad.2010.03.005. 

34. Kharbanda A.B., Krause E., Lu Y., Blumberg K. Analysis of Radiation Dose to Pediatric Patients During Computed Tomography Examinations // Acad. Emerg. Med. 2015. V.22, No. 6. P. 670-675. doi: 10.1111/acem.12689. 

35. Tan X.M., Shah M.T.B.M., Chong S.L., Ong Y.G., Ang P.H., Zakaria N.D.B., Lee K.P., Pek J.H. Differences in Radiation Dose for Computed Tomography of the Brain Among Pediatric Patients at the Emergency Departments: An Observational Study // BMC Emerg. Med. 2021. V.21, No. 1. P. 106. doi: 10.1186/s12873-021-00502-7. 

36. Smith-Bindman R., Moghadassi M., Wilson N., Nelson T.R., Boone J.M., Cagnon C.H., Gould R., Hall D.J., Krishnam M., Lamba R., McNitt-Gray M., Seibert A., Miglioretti D.L. Radiation Doses in Consecutive CT Examinations from Five University of California Medical Centers // Radiology. 2015. V.277, No. 1. P. 134-141. doi: 10.1148/radiol.2015142728. 

37. Dougeni E., Faulkner K., Panayiotakis G. A Review of Patient Dose and Optimisation Methods in Adult and Paediatric CT Scanning // Eur. J. Radiol. 2012. V.81, No. 4. P. e665-683. doi: 10.1016/j.ejrad.2011.05.025. 

38. Shrimpton P.C., Hillier M.C., Lewis M.A., Dunn M. National Survey of Doses from CT in the UK: 2003 // Br. J. Radiol. 2006. V.9, No. 948. P. 968-980. doi: 10.1259/bjr/93277434. 

39. Сарычева С.С. Оценка эффективной дозы у детей в интервенционной кардиологии // Радиационная гигиена. 2017. Т.10, № 2. С. 16–22.

40. Голиков В.Ю. Оценка радиационного риска, обусловленного проведением медицинских исследований в Российской Федерации с учетом половозрастного состава пациентов // Радиационная гигиена. 2022. Т.15, № 1. С. 59-67.

41. Капырина Ю.Н., Водоватов А.В., Потрахов Н.Н., Пузырев В.Г., Комиссаров М.И., Резник В.А., Петренко Ю.В. Оценка эффективных доз для некоторых интервенционных исследований у детей // VIII Всероссийская научно-практическая конференция производителей рентгеновской техники, 25 – 26 ноября 2021. СПб., 2021. С. 58-62.

42. Капырина Ю. Н., Водоватов А. В., Пузырев В. Г., Комиссаров М. И., Алешин И. Ю. Оценка эффективных доз облучения детей при выполнении рентгенэндоваскулярной окклюзии тестикулярных вен // Лучевая диагностика и терапия. 2022. № S. С. 166-167. 

43. Капырина Ю. Н., Комиссаров М. И., Алешин И. Ю., Водоватов А. В., Пузырев В.Г. Оценка эффективных доз детей при проведении интервенционных вмешательств в многопрофильной клинике СПБГПМУ // FORCIPE. 2022. Т.5, Спецвыпуск 1. С. 244-246.

44. Капырина Ю.Н., Водоватов А.В., Пузырев В.Г., Комиссаров М.И., Алешин И.Ю. Оценка эффективных доз детей при проведении интервенционных исследований // Сборник тезисов Всероссийской научно-практической конференции с международным участием «Радиационная гигиена и непрерывное профессиональное образование: новые вызовы и пути развития», посвященной 65-летию кафедры радиационной гигиены и радиационной безопасности имени академика Ф.Г. Кроткова, 27 октября 2022. М., 2022. С. 45-48.

45. Ubeda C., Vano E., Salazar L., Retana, Santos F., Gutierrez R., Manterola C. Paediatric Interventional Cardiology in Costa Rica: Diagnostic Reference Levels and Estimation of Population Dose // J. Radiol. Prot. 2018. V38, No. 1. P. 218-228. doi: 10.1088/1361-6498/aa9c09. 

46. Karambatsakidou A., Omar A., Fransson A., Poludniowski G. Calculating Organ and Effective Doses in Paediatric Interventional Cardiac Radiology Based on DICOM Structured Reports - Is Detailed Examination Data Critical to Dose Estimates? // Phys. Med. 2019. No. 57. P. 17-24. doi: 10.1016/j.ejmp.2018.12.008. 

47. Ubeda C., Miranda P., Vano E., Nocetti D., Manterola C. Organ and Effective Doses from Paediatric Interventional Cardiology Procedures in Chile // Phys. Med. 2017. No. 40. P. 95-103. doi: 10.1016/j.ejmp.2017.07.015. 

48. Song S., Liu C., Zhang M. Radiation Dose and Mortality Risk to Children Undergoing Therapeutic Interventional Cardiology // Acta Radiol. 2015. V.56, No. 7. P. 867-872. doi: 10.1177/0284185114542459. 

49. Raelson C.A., Kanal K.M., Vavilala M.S., Rivara F.P., Kim L.J., Stewart B.K., Cohen W.A. Radiation Dose and Excess Risk of Cancer in Children Undergoing Neuroangiography // AJR Am. J. Roentgenol. 2009. V.193, No. 6. P. 1621-1628. doi: 10.2214/AJR.09.2352.

50. Gherardi G.G., Iball G.R., Darby M.J., Thomson J.D. Cardiac Computed Tomography and Conventional Angiography in the Diagnosis of Congenital Cardiac Disease in Children: Recent Trends and Radiation Doses // Cardiol. Young. 2011. V.21, No. 6. P. 616-622. doi: 10.1017/S1047951111000485.

51. Barnaoui S., Rehel J.L., Baysson H., Boudjemline Y., Girodon B., Bernier M.O., Bonnet D., Aubert B. Local Reference Levels and Organ Doses from Pediatric Cardiac Interventional Procedures // Pediatr Cardiol. 2014. V.35, No. 6. P. 1037-1045. doi: 10.1007/s00246-014-0895-5.

52. Buytaert D., Vandekerckhove K., Panzer J., Rubbens L., De Wolf D., Bacher K. Local DRLs and Automated Risk Estimation in Paediatric Interventional Cardiology // PLoS One. 2019. V.14, No. 7. P. e0220359. doi: 10.1371/journal.pone.0220359.

53. Billinger J., Nowotny R., Homolka P. Diagnostic Reference Levels in Pediatric Radiology in Austria // Eur. Radiol. 2010. V.20, No. 7. P. 1572-1579. doi: 10.1007/s00330-009-1697-7.

54. Suliman I.I., Elshiekh E.H. Radiation Doses from Some Common Paediatric X-Ray Examinations in Sudan // Radiat. Prot. Dosimetry. 2008. V.132, No. 1. P. 64-72. doi: 10.1093/rpd/ncn232. 

55. Gao Y., Quinn B., Pandit-Taskar N., Behr G., Mahmood U., Long D., Xu X.G., St. Germain J., Dauer L.T. Patient-Specific Organ and Effective Dose Estimates in Pediatric Oncology Computed Tomography // Phys. Med. 2018. No. 45. P. 146-155. doi: 10.1016/j.ejmp.2017.12.013. 

56. Балонов М.И., Голиков В.Ю., Водоватов А.В., Чипига Л.А., Звонова И.А., Кальницкий С.А., Сарычева С.С., Шацкий И.Г. Научные основы радиационной защиты в современной медицине. Т.1 // Лучевая диагностика. СПб.: НИИРГ имени проф. П.В. Рамзаева, 2019. 320 с.

57. Дружинина П.С., Чипига Л.А., Шацкий И.Г., Водоватов А.В., Поздняков А.В., Пузырев В.Г., Тащилкин А.И., Маликов Д.А., Потрахов Н.Н., Потрахов Ю.Н. Оптимизация протоколов компьютерно томографических исследований для новорожденных пациентов на примере фантомного исследования с компьютерным томографом Ingenuity 128, Philips // Медицинская физика. 2022. № 4. С. 43.

 

 PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследование не имело спонсорской поддержки.

Участие авторов. Cтатья подготовлена с равным участием авторов.

Поступила: 20.07.2023. Принята к публикации: 27.08.2023.

 

 

Адрес редакции журнала

 

123098, Москва, ул. Живописная, 46 Телефон: (499) 190-95-51. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Местонахождение журнала

Посещаемость

2763661
Сегодня
Вчера
На этой нед.
На прошл. нед.
В этом мес.
В прошл. мес.
За все время
4026
2366
22045
18409
71404
75709
2763661

Прогноз на сегодня
4848


Ваш IP:216.73.216.89