О ЖУРНАЛЕ
Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.
Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.
Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.
Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.
Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.
Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.
С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.
Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.
Медицинская радиология и радиационная безопасность. 2025. Том 70. № 1
DOI:10.33266/1024-6177-2025-70-1-81-92
А.К. Сморчкова, А.В. Петряйкин, Ю.А. Васильев
ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В ОЦЕНКЕ МЫШЕЧНОЙ ТКАНИ
ПО КОМПЬЮТЕРНО-ТОМОГРАФИЧЕСКИМ ИЗОБРАЖЕНИЯМ: ОБЗОР ЛИТЕРАТУРЫ
Научно-практический клинический центр диагностики и телемедицинских технологий
Департамента здравоохранения города Москвы, Москва
Контактное лицо: Анастасия Кирилловна Сморчкова, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
СОДЕРЖАНИЕ
Введение: В настоящее время всё больше внимания уделяется синдромам и заболеваниям, при которых изменяется качественный и количественный состав тела человека. Саркопения – заболевание, характеризующееся генерализованной потерей мышечной массы и силы, поражающее как трудоспособное, так и пожилое население, с глобальной распространённостью в общей популяции до 10 % по данным литературы. Согласно критериям Европейской рабочей группы по саркопении у пожилых людей от 2019 г., «золотым стандартом» медицинской визуализации для оценки снижения мышечной массы являются компьютерная томография (КТ) и магнитно-резонансная томография (МРТ). Ввиду всё более широкого использования технологий искусственного интеллекта (ИИ) открываются перспективы анализа большого объёма медицинских данных, прежде всего КТ-изображений.
Цель: Ознакомление широкой аудитории с актуальными работами по лучевой диагностике значимых изменений скелетной мышечной ткани по КТ-изображениям с использованием технологий ИИ, включая анализ имеющихся вариантов их клинического и научного применения.
Методология поиска и отбора: Произведен поиск публикаций по расширенному поисковому запросу в библиографических базах PubMed и eLibrary.ru.
Результаты: Проанализировано 46 отобранных оригинальных статей, опубликованных в период с 2019 по 2024 гг.
Рассмотрены варианты клинического и научного применения алгоритмов ИИ. Основная цель клинического применения – оценка прогностической ценности морфометрических показателей саркопении для широкого ряда заболеваний – онкологических (большая часть работ) и хронических, а также для состояний после хирургических вмешательств. Отмечено получение дополнительных морфометрических показателей не только мышечной, но и жировой ткани в тех работах, где это проводилось и имело клиническую значимость. Выделена основная проблема, существующая в настоящее время – отсутствие четкого места в клинико-диагностической парадигме. Основной вариант научного применения – обработка большого количества данных для популяционных исследований. Приведены детали методологии КТ-оценки состава тела, включая наиболее часто используемые пороговые показатели скелетно-мышечного индекса для КТ-диагностики саркопении, а также были кратко описаны технические аспекты использованных алгоритмов ИИ. В заключение был отмечен высокий интерес исследователей к данной теме, обозначены перспективы для дальнейших исследований в данной области и применения на практике их результатов.
Ключевые слова: саркопения, компьютерная томография, искусственный интеллект, глубокое обучение, морфометрия
Для цитирования: Сморчкова А.К., Петряйкин А.В., Васильев Ю.А. Возможности применения искусственного интеллекта в оценке мышечной ткани по компьютерно-томографическим изображениям: обзор литературы // Медицинская радиология и радиационная безопасность. 2025. Т. 70. № 1. С. 81–92. DOI:10.33266/1024-6177-2025-70-1-81-92
Список литературы
1. Cruz-Jentoft A.J., Bahat G., Bauer J., et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing. 2019;48;1:16-31. doi:10.1093/ageing/afy169
2. Correa-de-Araujo R., Addison O., Miljkovic I., et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: an Interdisciplinary Workshop at the National Institute on Aging. Front Physiol. 2020;11:963. doi:10.3389/fphys.2020.00963
3. Kelly B.S., Judge C., Bollard S.M., et al. Radiology Artificial Intelligence: a Systematic Review and Evaluation of Methods (Raise). Eur Radiol. 2022;32;11:7998-8007. doi:10.1007/s00330-022-08784-6
4. Lenchik L., Boutin R. Sarcopenia: Beyond Muscle Atrophy and into the New Frontiers of Opportunistic Imaging, Precision Medicine, and Machine Learning. Semin Musculoskelet Radiol. 2018;22;03:307-322. doi:10.1055/s-0038-1641573
5. Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Summers R.M. Deep Learning-Based Muscle Segmentation and Quantification at Abdominal CT: Application to a Longitudinal Adult Screening Cohort for Sarcopenia Assessment. Br J Radiol. 2019;92;1100:20190327. doi:10.1259/bjr.20190327
6. Gillen J., Mills K.A., Dvorak J., et al. Imaging Biomarkers of Adiposity and Sarcopenia as Potential Predictors for Overall Survival among Patients with Endometrial Cancer Treated with Bevacizumab. Gynecol Oncol Rep. 2019;30:100502. doi:10.1016/j.gore.2019.100502
7. Lenchik L., Barnard R., Boutin R.D., et al. Automated Muscle Measurement on Chest CT Predicts All-Cause Mortality in Older Adults From the National Lung Screening Trial. J Gerontol Ser A. 2021;76;2:277-285. doi:10.1093/gerona/glaa141
8. Magudia K., Bridge C.P., Bay C.P., et al. Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-Specific Reference Curves. Radiology. 2021;298;2:319-329. doi:10.1148/radiol.2020201640
9. Fischer S., Clements S., McWilliam A., et al. Influence of Abiraterone and Enzalutamide on Body Composition in Patients with Metastatic Castration Resistant Prostate Cancer. Cancer Treat Res Commun. 2020;25:100256. doi:10.1016/j.ctarc.2020.100256.
10. Lee J., Kim E.Y., Kim E., et al. Longitudinal Changes in Skeletal Muscle Mass in Patients with Advanced Squamous Cell Lung Cancer. Thorac Cancer. 2021;12;11:1662-1667. doi:10.1111/1759-7714.13958
11. Yoon J.K., Lee S., Kim K.W., et al. Reference Values for Skeletal Muscle Mass at the Third Lumbar Vertebral Level Measured by Computed Tomography in a Healthy Korean Population. Endocrinol Metab. 2021;36;3:672-677. doi:10.3803/EnM.2021.1041
12. Hsu T.M.H., Schawkat K., Berkowitz S.J., et al. Artificial Intelligence to Assess Body Composition on Routine Abdominal CT Scans and Predict Mortality in Pancreatic Cancer – a Recipe for Your Local Application. Eur J Radiol. 2021;142:109834. doi:10.1016/j.ejrad.2021.109834
13. Lee S.A., Jang I.Y., Park S.Y., et al. Benefit of Sarcopenia Screening in Older Patients Undergoing Surgical Aortic Valve Replacement. Ann Thorac Surg. 2022;113;6:2018-2026. doi:10.1016/j.athoracsur.2021.06.067
14. Kong H.H., Kim K.W., Ko Y.S., et al. Longitudinal Changes in Body Composition of Long-Term Survivors of Pancreatic Head Cancer and Factors Affecting the Changes. J Clin Med. 2021;10;15:3436. doi:10.3390/jcm10153436
15. Kim J., Han S.H., Kim H. Detection of Sarcopenic Obesity and Prediction of Long‐Term Survival in Patients with Gastric Cancer Using Preoperative Computed Tomography and Machine Learning. J Surg Oncol. 2021;124;8:1347-1355. doi:10.1002/jso.26668
16. Jullien M., Tessoulin B., Ghesquières H., et al. Deep-Learning Assessed Muscular Hypodensity Independently Predicts Mortality in DLBCL Patients Younger than 60 Years. Cancers. 2021;13;18:4503. doi:10.3390/cancers13184503
17. Han Q., Kim S.I., Yoon S.H., et al. Impact of Computed Tomography-Based, Artificial Intelligence-Driven Volumetric Sarcopenia on Survival Outcomes in Early Cervical Cancer. Front Oncol. 2021;11:741071. doi:10.3389/fonc.2021.741071
18. Ying T., Borrelli P., Edenbrandt L., et al. Automated Artificial Intelligence-Based Analysis of Skeletal Muscle Volume Predicts Overall Survival after Cystectomy for Urinary Bladder Cancer. Eur Radiol Exp. 2021;5;1:50. doi:10.1186/s41747-021-00248-8
19. Laur O., Weaver M.J., Bridge C., et al. Computed Tomography-Based Body Composition Profile as a Screening Tool for Geriatric Frailty Detection. Skeletal Radiol. 2022;51;7:1371-1380. doi:10.1007/s00256-021-03951-0
20. Kim S.I., Chung J.Y., Paik H., et al. Prognostic Role of Computed Tomography-Based, Artificial Intelligence-Driven Waist Skeletal Muscle Volume in Uterine Endometrial Carcinoma. Insights Imaging. 2021;12;1:192. doi:10.1186/s13244-021-01134-y
21. Faron A., Opheys N.S., Nowak S., et al. Deep Learning-Based Body Composition Analysis Predicts Outcome in Melanoma Patients Treated with Immune Checkpoint Inhibitors. Diagnostics. 2021;11;12:2314. doi:10.3390/diagnostics11122314
22. Massaad E., Bridge C.P., Kiapour A., et al. Evaluating Frailty, Mortality, and Complications Associated with Metastatic Spine Tumor Surgery Using Machine Learning–Derived Body Composition Analysis. J Neurosurg Spine. 2022;37;2:263-273. doi:10.3171/2022.1.SPINE211284
23. Somasundaram E., Castiglione J.A., Brady S.L., Trout A.T. Defining Normal Ranges of Skeletal Muscle Area and Skeletal Muscle Index in Children on CT Using an Automated Deep Learning Pipeline: Implications for Sarcopenia Diagnosis. Am J Roentgenol. 2022;219;2:326-336. doi:10.2214/AJR.21.27239
24. Beetz N.L., Geisel D., Shnayien S., et al. Effects of Artificial Intelligence-Derived Body Composition on Kidney Graft and Patient Survival in the Eurotransplant Senior Program. Biomedicines. 2022;10;3:554. doi:10.3390/biomedicines10030554
25. Beetz N.L., Geisel D., Maier C., et al. Influence of Baseline CT Body Composition Parameters on Survival in Patients with Pancreatic Adenocarcinoma. J Clin Med. 2022;11;9:2356. doi:10.3390/jcm11092356
26. Kim D.W., Ahn H., Kim K.W., et al. Prognostic Value of Sarcopenia and Myosteatosis in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Korean J Radiol. 2022;23;11:1055. doi:10.3348/kjr.2022.0277
27. Hosch R., Kattner S., Berger M.M., et al. Biomarkers Extracted by Fully Automated Body Composition Analysis from Chest CT Correlate with SARS-CoV-2 Outcome Severity. Sci Rep. 2022;12;1:16411. doi:10.1038/s41598-022-20419-w
28. Nandakumar B., Baffour F., Abdallah N.H., et al. Sarcopenia Identified by Computed Tomography Imaging Using a deep Learning–Based Segmentation Approach Impacts Survival in Patients with Newly Diagnosed Multiple Myeloma. Cancer. 2023;129;3:385-392. doi:10.1002/cncr.34545
29. Lee J.Y., Kim K.W., Ko Y., et al. Serial Changes in Body Composition and the Association with Disease Activity during Treatment in Patients with Crohn’s Disease. Diagnostics. 2022;12;11:2804. doi:10.3390/diagnostics12112804
30. Keyl J., Hosch R., Berger A., et al. Deep Learning‐Based Assessment of Body Composition and Liver Tumour Burden for Survival Modelling in Advanced Colorectal Cancer. J Cachexia Sarcopenia Muscle. 2023;14;1:545-552. doi:10.1002/jcsm.13158
31. Lee J.H., Choi S.H., Jung K.J., Goo J.M., Yoon S.H. High Visceral Fat Attenuation and Long‐Term Mortality in a Health Check‐Up Population. J Cachexia Sarcopenia Muscle. 2023;14;3:1495-1507. doi:10.1002/jcsm.13226
32. Borrelli A., Pecoraro M., Del Giudice F., et al. Standardization of Body Composition Status in Patients with Advanced Urothelial Tumors: the Role of a CT-Based AI-Powered Software for the Assessment of Sarcopenia and Patient Outcome Correlation. Cancers. 2023;15;11:2968. doi:10.3390/cancers15112968
33. He M., Chen Z.F., Zhang L., et al. Associations of Subcutaneous Fat Area and Systemic Immune-inflammation Index with Survival in Patients with Advanced Gastric Cancer Receiving Dual PD-1 and HER2 Blockade. J Immunother Cancer. 2023;11;6:e007054. doi:10.1136/jitc-2023-007054
34. Park S.J., Yoon J.H., Joo I., Lee J.M. Newly Developed Sarcopenia after Liver Transplantation, Determined by a Fully Automated 3D Muscle Volume Estimation on Abdominal CT, can Predict Post-Transplant Diabetes Mellitus and Poor Survival Outcomes. Cancer Imaging. 2023;23;1:73. doi:10.1186/s40644-023-00593-4
35. Mangana Del Rio T., Sacleux S.C., Vionnet J., et al. Body Composition and Short-Term Mortality in Patients Critically Ill with Acute-on-Chronic Liver Failure. JHEP Rep. 2023;5;8:100758. doi:10.1016/j.jhepr.2023.100758
36. Nowak S., Kloth C., Theis M., et al. Deep Learning–Based Assessment of CT Markers of Sarcopenia and Myosteatosis for Outcome Assessment in Patients with Advanced Pancreatic Cancer after High-Intensity Focused Ultrasound Treatment. Eur Radiol. Published Online August 12, 2023. 2024 Jan;34;1:279-286. doi:10.1007/s00330-023-09974-6
37. Choi S., Yoon S.H., Sung J., Lee J.H. Association Between Fat Depletion and Prognosis of Amyotrophic Lateral Sclerosis: CT ‐Based Body Composition Analysis. Ann Neurol. 2023;94;6:1116-1125. doi:10.1002/ana.26775
38. Kim M., Lee S.M., Son I.T., Park T., Oh B.Y. Prognostic Value of Artificial Intelligence-Driven, Computed Tomography-Based, Volumetric Assessment of the Volume and Density of Muscle in Patients with Colon Cancer. Korean J Radiol. 2023;24;9:849. doi:10.3348/kjr.2023.0109
39. Tonnesen P.E., Mercaldo N.D., Tahir I., et al. Muscle Reference Values From Thoracic and Abdominal CT for Sarcopenia Assessment: the Framingham Heart Study. Invest Radiol. 2024 Mar 1;59;3:259-270. doi:10.1097/RLI.0000000000001012
40. Souza A.C., Rosenthal M.H., Moura F.A., et al. Body Composition, Coronary Microvascular Dysfunction, and Future Risk of Cardiovascular Events Including Heart Failure. Jacc Cardiovasc Imaging. . 2024 Feb;17;2:179-191. doi:10.1016/j.jcmg.2023.07.014
41. Blankemeier L., Yao L., Long J., et al. Skeletal Muscle Area on CT: Determination of an Optimal Height Scaling Power and Testing for Mortality Risk Prediction. Am J Roentgenol. 2024;222;1:e2329889. doi:10.2214/AJR.23.29889
42. Just I.A., Schoenrath F., Roehrich L., et al. Artificial Intelligence‐Based Analysis of Body Composition Predicts Outcome in Patients Receiving Long‐Term Mechanical Circulatory Support. J Cachexia Sarcopenia Muscle. 2024;15;1:270-280. doi:10.1002/jcsm.13402
43. Keyl J., Bucher A., Jungmann F., et al. Prognostic Value of Deep Learning-Derived Body Composition in Advanced Pancreatic Cancer – a Retrospective Multicenter Study. Esmo Open. 2024;9;1:102219. doi:10.1016/j.esmoop.2023.102219
44. Lee M.W., Jeon S.K., Paik W.H., et al. Prognostic Value of Initial and Longitudinal Changes in Body Composition in Metastatic Pancreatic Cancer. J Cachexia Sarcopenia Muscle. 2024;15;2:735-745. doi:10.1002/jcsm.13437
45. Weston A.D., Grossardt B.R., Garner H.W., et al. Abdominal Body Composition Reference Ranges and Association with Chronic Conditions in an Age- and Sex-Stratified Representative Sample of a Geographically Defined American Population. J Gerontol A Biol Sci Med Sci. 2024;79;4:glae055. doi:10.1093/gerona/glae055
46. Suthakaran R., Cao K., Arafat Y., et al. Body Composition Assessment by Artificial Intelligence Can Be a Predictive Tool for Short-Term Postoperative Complications in Hartmann’s Reversals. BMC Surg. 2024;24;1:111. doi:10.1186/s12893-024-02408-0
47. Pekař M., Jiravský O., Novák J., et al. Sarcopenia and Adipose Tissue Evaluation by Artificial Intelligence Predicts the Overall Survival after TAVI. Sci Rep. 2024;14;1:8842. doi:10.1038/s41598-024-59134-z
48. Hanna P.E., Ouyang T., Tahir I., et al. Sarcopenia, Adiposity and Large Discordance between Cystatin C and Creatinine‐Based Estimated Glomerular Filtration Rate in Patients with Cancer. J Cachexia Sarcopenia Muscle. 2024;15;3:1187-1198. doi:10.1002/jcsm.13469
49. Cho S.W., Baek S., Han S., et al. Metabolic Phenotyping with Computed Tomography Deep Learning for Metabolic Syndrome, Osteoporosis and Sarcopenia Predicts Mortality in Adults. J Cachexia Sarcopenia Muscle. 2024 Aug;15;4:1418-1429. doi:10.1002/jcsm.13487
50. Sakamoto K., Hiraoka S. ichiro, Kawamura K., et al. Automated Evaluation of Masseter Muscle Volume: deep Learning Prognostic Approach in Oral Cancer. BMC Cancer. 2024;24;1:128. doi:10.1186/s12885-024-11873-y
51. Shen W., Punyanitya M., Wang Z., et al. Total Body Skeletal Muscle and Adipose Tissue Volumes: Estimation from a Single Abdominal Cross-Sectional Image. J Appl Physiol. 2004;97;6:2333-2338. doi:10.1152/japplphysiol.00744.2004
52. Martin L., Birdsell L., MacDonald N., et al. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J Clin Oncol. 2013;31;12:1539-1547. doi:10.1200/JCO.2012.45.2722
53. Fearon K., Strasser F., Anker S.D., et al. Definition and Classification of Cancer Cachexia: an International Consensus. Lancet Oncol. 2011;12;5:489-495. doi:10.1016/S1470-2045(10)70218-7
54. Prado C.M., Lieffers J.R., McCargar L.J., et al. Prevalence and Clinical Implications of Sarcopenic Obesity in Patients with Solid Tumours of the Respiratory and Gastrointestinal Tracts: a Population-Based Study. Lancet Oncol. 2008;9;7:629-635. doi:10.1016/S1470-2045(08)70153-0
55. Carey E.J., Lai J.C., Wang C.W., et al. A Multicenter Study to Define Sarcopenia in Patients with End-Stage Liver Disease. Liver Transplant off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2017;23;5:625-633. doi:10.1002/lt.24750
56. Jong S.L., Young S.K., Eun Young K., Wook J. Prognostic Significance of CT-Determined Sarcopenia in Patients with Advanced Gastric Cancer | PLOS ONE. 2018 Aug20;13:8:e0202700. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202700
57. Morley J.E., Anker S.D., von Haehling S. Prevalence, Incidence, and Clinical Impact of Sarcopenia: Facts, Numbers, and Epidemiology-Update 2014. J Cachexia Sarcopenia Muscle. 2014;5;4:253-259. doi:10.1007/s13539-014-0161-y
58. Prado C.M.M., Baracos V.E., McCargar L.J., et al. Sarcopenia as a Determinant of Chemotherapy Toxicity and Time to Tumor Progression in Metastatic Breast Cancer Patients Receiving Capecitabine Treatment. Clin Cancer Res off J Am Assoc Cancer Res. 2009;15;8:2920-2926. doi:10.1158/1078-0432.CCR-08-2242
59. Zhuang C.L., Huang D.D., Pang W.Y., et al. Sarcopenia is an Independent Predictor of Severe Postoperative Complications and Long-Term Survival after Radical Gastrectomy for Gastric Cancer: Analysis from a Large-Scale Cohort. Medicine (Baltimore). 2016;95;13:e3164. doi:10.1097/MD.0000000000003164
60. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science. Springer International Publ., 2015:234-241. doi:10.1007/978-3-319-24574-4_28
61. Trägårdh E, Borrelli P, Kaboteh R, et al. Recomia – a Cloud-Based Platform for Artificial Intelligence Research in Nuclear Medicine and Radiology. EJNMMI Phys. 2020;7:51. doi:10.1186/s40658-020-00316-9
62. Myronenko A. 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. Published Online 2018 Nov;1:311-320. doi:10.48550/ARXIV.1810.11654
63. Huang G., Liu Z., van der Maaten L., Weinberger K.Q. Densely Connected Convolutional Networks. 2016;1:069-93. Published online January 28, 2018. doi:10.48550/arXiv.1608.06993
64. Yushkevich P.A., Piven J., Hazlett H.C., et al. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. NeuroImage. 2006;31;3:1116-1128. doi:10.1016/j.neuroimage.2006.01.015
65. Сморчкова А.К., Петряйкин А.В., Артюкова З.Р. MosMedData: набор диагностических компьютерно-томографических изображений органов брюшной полости на уровне L3 позвонка с сегментацией скелетной мышечной и внутримышечной жировой тканей: Свидетельство о государственной регистрации базы данных №2023624494; Российская Федерация; заявл. 28.11.2023; опубл. 08.12.2023 [Smorchkova A.K., Petryaykin A.V., Artyukova Z.R. MosMedData: Nabor Diagnosticheskikh Komp’yuterno-Tomograficheskikh Izobrazheniy Organov Bryushnoy Polosti na Urovne L3 Pozvonka s Segmentatsiyey Skeletnoy Myshechnoy i Vnutrimyshechnoy Zhirovoy Tkaney = MosMedData: a Set of Diagnostic Computed Tomographic Images of Abdominal Organs at the Level of the L3 Vertebra with Segmentation of Skeletal Muscle and Intramuscular Adipose Tissue. Certificate of State Registration of the Database No. 2023624494. Russian Federation, declared 28.11.2023, published 08.12.2023 (In Russ.)].
66. van Vugt J.L.A., Coebergh van den Braak R.R.J., Schippers H.J.W., et al. Contrast-Enhancement Influences Skeletal Muscle Density, but not Skeletal Muscle Mass, Measurements on Computed Tomography. Clin Nutr Edinb Scotl. 2018;37;5:1707-1714. doi:10.1016/j.clnu.2017.07.007
67. Васильев Ю.А., Владзимирский А.В., Омелянская О.В., Арзамасов К.М., Четвериков С.Ф., Румянцев Д.А., Зеленова М.А. Методология тестирования и мониторинга программного обеспечения на основе технологий искусственного интеллекта для медицинской диагностики // Digital Diagnostics. 2023. Т.4. №3. C. 252-267 [Vasil’yev Yu.A., Vladzimirskiy A.V., Omelyanskaya O.V., Arzamasov K.M., Chetverikov S.F., Rumyantsev D.A., Zelenova M.A. Methodology of Testing and Monitoring Software Based on Artificial Intelligence Technologies for Medical Diagnostics. Digital Diagnostics. 2023;4;3:252-267 (In Russ.)]. doi: 10.17816/DD321971
PDF (RUS) Полная версия статьи
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Данная работа подготовлена авторами в рамках НИОКР «Разработка и создание аппаратно-программного комплекса для оппортунистического скрининга остеопороза» (№ ЕГИСУ: 123031400007–7) в соответствии с приказом Департамента здравоохранения города Москвы от 21.12.2022 No 1196 «Об утверждении государственных заданий, финансовое обеспечение которых осуществляется за счёт средств бюджета города Москвы государственным бюджетным (автономным) учреждениям подведомственным Департаменту здравоохранения города Москвы, на 2023 год и плановый период 2024 и 2025 гг.».
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 20.10.2024. Принята к публикации: 25.11.2024.