О ЖУРНАЛЕ
Научный журнал «Медицинская радиология и радиационная безопасность» (Мedical Radiology and Radiation Safety), ISSN 1024-6177 основан в январе 1956 г. (до 30 декабря 1993 г. выходил под названием «Медицинская радиология», ISSN 0025-8334). В 2018 году журнал получил Online ISSN: 2618-9615 и был зарегистрирован как электронное сетевое издание в Роскомнадзоре 29 марта 2018 года. На его страницах публикуются оригинальные научные статьи по вопросам радиобиологии, радиационной медицины, радиационной безопасности, лучевой терапии, ядерной медицины, а также научные обзоры; в целом журнал имеет более 30 рубрик и представляет интерес для специалистов, работающих в областях медицины¸ радиационной биологии, эпидемиологии, медицинской физики и техники. С 01.07.2008 г. Издатель журнала – ФГБУ «Государственный научный центр Российской Федерации – Федеральный медицинский биофизический центр им. А.И. Бурназяна» ФМБА России. Учредитель с 1956 г. - Министерство здравоохранения РФ, а с 2008 г. по настоящее время – Федеральное медико-биологическое агентство.
Членами редакционной коллегии журнала являются ученые – специалисты, работающие в области радиационной биологии и медицины, радиационной защиты, радиационной эпидемиологии, радиационной онкологии, лучевой диагностики и терапии, ядерной медицины и медицинской физики. В состав редакционной коллегии входят: академики РАН, члены-корреспонденты РАН, доктора медицинских наук, профессора, кандидаты и доктора биологических, физико-математических наук и технических наук. Состав редколлегии постоянно пополняется за счет авторитетных специалистов, работающих в ближнем и дальнем зарубежье.
Периодичность выхода в свет – 6 номеров в год, объемом – 13,5 усл. печатных листов или 88 печатных страниц и тиражом 1000 экземпляров. Журнал имеет идентичную по содержанию полнотекстовую электронную версию, которая одновременно с печатным вариантом и цветными рисунками размещается на сайтах Научной Электронной Библиотеки (НЭБ) и сайте журнала. Распространение по подписке через Агентство «Роспечать» по договору № 7407 от 16 июня 2006 г., через индивидуальных покупателей и коммерческие структуры. Публикация статей бесплатная.
Журнал входит в Перечень ведущих российских рецензируемых научных журналов ВАК, рекомендованных для опубликования результатов диссертационных исследований. С 2008 г. журнал представлен в Интернете и индексируется в базе данных РИНЦ, а также входит в Перечень Russian Science Citation Index (RSCI), размещенной на платформе Web of Science. С 2 февраля 2018 года журнал «Медицинская радиология и радиационная безопасность" индексируется в мультидисциплинарной библиографической и реферативной базе SCOPUS.
Краткие электронные версии статей журнала с 2005 г. находятся в открытом доступе в разделе "Выпуски журнала". С 2011 года в открытом доступе представлены все выпуски журнала целиком, а с 2016 года - полнотекстовые версии научных статей. Полный текст остальных статей любого номера, начиная с 2005 г. могут приобрести подписчики только через НЭБ. Редакция журнала «Медицинская радиология и радиационная безопасность» в соответствии с договором с НЭБ поставляет ей в полном объеме выпускаемую продукцию с 2005 г. по настоящее время.
Основным рабочим языком журнала является русский, дополнительный язык – английский, который используется для написания названий статей, сведений об авторах, аннотаций, ключевых слов, списка литературы.
С 2017 г. журнал «Медицинская радиология и радиационная безопасность» перешел на цифровую идентификацию публикаций, присвоив каждой статье идентификатор цифрового объекта (DOI), что значительно ускорило поиск местонахождения статьи в Интернете. В дальнейшем в планах развития журнала «Медицинская радиология и радиационная безопасность» предполагается его издание в англоязычном варианте. С целью получения информации о публикационной активности журнала в марте 2015 года на сайте журнала был помещен счетчик обращений читателей к материалам, выложенным на сайте с 2005 г. по настоящее время. В течение 2015 – 2016 гг. в среднем было не более 100 – 170 обращений в день. Размещение ряда статей, а также электронных версий профильных монографий и сборников в открытом доступе резко увеличило число обращений на сайт журнала до 500 – 800 в день, а общее число посещений сайта к началу 2019 г. составило 527 тыс.
Двухлетний импакт-фактор РИНЦ, по данным на начало 2019 г., составил 0,447, с учетом цитирования из всех источников – 0,614, а пятилетний импакт-фактор РИНЦ – 0,359.
Медицинская радиология и радиационная безопасность. 2019. Том 64. № 3. С. 19–31
DOI: 10.12737/article_5cf2306a3b26d6.36140627
А.А. Иванов1,2,3, Т.М. Бычкова1,2, О.В. Никитенко1,2, И.Б. Ушаков1
Радиобиологические эффекты протонов
1. Федеральный медицинский биофизический центр имени А.И. Бурназяна ФМБА России, Москва.
E-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.
;
2. Институт медико-биологических проблем РАН, Москва;
3. Объединенный институт ядерных исследований, Дубна
А.А. Иванов – зав. лаб., д.м.н., проф.;
Т.М. Бычкова – м.н.с.;
О.В. Никитенко – м.н.с.;
И.Б. Ушаков – г.н.с., академик РАН, д.м.н., проф.
Реферат
Обзор содержит анализ литературных данных и результатов собственных исследований авторов по радиобиологическим эффектам протонов различных энергий на клеточном, системном (межклеточном) и организменном уровнях, применительно к практическим задачам от лучевой терапии онкологических заболеваний до воздействия протонов на организм космонавтов.
Установлено, что ОБЭ протонов является величиной переменной, зависящей от ЛПЭ частиц, величины и мощности дозы, наличия или отсутствия кислорода. ОБЭ протонов меняется в зависимости от объекта исследования, типа ткани, энергии протонов и глубины проникновения частиц, а также от метода оценки биологической эффективности протонов, что соответствует общим радиобиологическим закономерностям. В частности, показано, что величина ОБЭ протонов, принятая в лучевой терапии на уровне 1,1, является условной. Твердо установленным и неоднократно подтвержденным является факт увеличения ОБЭ со снижением энергии протонов и, соответственно, с увеличением ЛПЭ.
Использование элементов физической защиты космического корабля при воздействии протонов с энергией 170 МэВ в эксперименте на мышах обусловливает увеличение ЛПЭ протонов и увеличение ОБЭ по показателю клеточности костного мозга.
Фармакологические препараты, эффективные при фотонном облучении, эффективны и при воздействии пучком протонов. Показано, что природный пигмент меланин и рекомбинантная марганец-содержащая супероксиддисмутаза способствуют сохранению и ускорению восстановления кроветворения у животных, облученных протонами.
Вакцина «Гриппол» повышает радиорезистентность при протонном облучении. Нейропептид «Семакс» благоприятно влияет на состояние ЦНС и силу передних лап животных, облученных протонами в пике Брэгга в нелетальной дозе.
Ключевые слова: протоны, ОБЭ, пик Брэгга, ЦНС, кроветворение, хромосомные аберрации, выживаемость, противолучевые средства, лучевая терапия, космическое излучение, мыши, крысы
СПИСОК ЛИТЕРАТУРЫ
1. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and liners energy transfer. Phys Med Biol. 2014 Nov 21;59(22): R419–72. DOI: 10.1088/0031-9155/59/22/R419.
2. Gazenko OG, Calvin M. Foundations of Space Biology and Medicine. Vol I. Space as a Habitat. Moscow: Nauka; 1975; 430 p. (Russian).
3. Nurlybaev K, Martinyuk Yu, Karakash A. Radiation Protection in Radiotherapy Using Electron Accelerators. ANRI. 2014;1(76):15-21. (Russian).
4. Grigor’ev YuG. The biological effect of high-energy protons. Moscow: Atomizdat. 1967; 508 p. (Russian).
5. Grigor’ev AI, Krasavin EA, Ostrovskij MA. Galactic heave charged particles damaging effect on biological structures. Neuroscience and Behavioral Physiology – Sechenov Physiology Journal. 2013; 99(3); 273-80. (Russian).
6. Fedorenko BS. Radiobiological effects of corpuscular radiation: radiation safety of space flight. Moscow: Nayka. 2006; 189 p. (Russian).
7. Cucinotta A, Durante M, Loeffler J. Editorial: Charged Particles in Oncology. Front Oncol. 2017 Dec 8;7:301. DOI: 10.3389/fonc.2017.00301.
8. Durante M, Tommasino F. Proton radiobiology. Cancers (Basel). 2015 Feb 12;7(1):353-81. DOI: 10.3390/cancers7010353.
9. Girdhani S, Sachs R, Hlatky L. Biological Effects of proton radiation: what we know and don’t know. Radiat Res. 2013 Mar;179(3):257-72. DOI: 10.1667/RR2839.1.
10. Butomo NV, Grebenyuk AN, Legeza VN, et al. Fundamentals of Medical Radiobiology. SPb.: Foliant. 2004; 258 p. (Russian).
11. Belli M, Bettega D, Calzolari P, et al. Inactivation of human normal and tumor cells irradiated with low energy protons. Int J Radiat Biol. 2000 Jun;76(6):831-9.
12. Ushakov I.B, Shtemberg A.S. The problems of studying the effects of far long-duration space mission factors on the higher nervous activity in model experiments with animals. Aerospace and Environmental Medicine. 2012; 46(1):5-16. (Russian).
13. Parihar VK, Allen B, Tran KK, et al. What happens to your brain on the way to Mars. Sci Adv. 2015 May 1;1(4). DOI: 10.1126/sciadv.1400256.
14. Pyatkin EK, Baranov AE, Filyushkin IV, et al. Estimation of the dose and uniformity of radiation in acute human radiation lesions using the analysis of chromosomal aberrations. Guidelines. Moscow: USSR Ministry of Health, 1988; 25 p. (Russian).
15. Govorun RD, Deperas-Kaminska M, Zaitseva EM, et al. Study of chromosomal abnormalities in human cells after irradiation with a therapeutic beam of protons of the phasotron of the Joint Institute for Nuclear Research. Letters to ECHA. 2006;3(1):92-101. (Russian).
16. Dorozhkina OV, Bulynina TM, Ivanov AA. Effect of individual and group housing of mice on the level of radioresistance. Saratov. Nauch.-Med. Zh. 2015;60(5):653-6. (Russian).
17. Fedorenko BS, Shevchenko VA, Snigireva GP, et al. Cytogenetic studies of blood lymphocytes of cosmonauts after long-ter, space flights. Radiation Biology. Radioecology. 2000;40(5):596-602. (Russian).
18. Nugis VYu. Estimation of radiation dose from cytogenetic studies of peripheral blood and bone marrow. In: Radiation damage of humans. Ed. L.A. Ilyin. Moscow: Izd. At. 2001. Vol. 2:249-53 (Russian).
19. Hayata I. Biological dosimetry by chromosome analysis. Radiation and Risk. 1996;(7):72-5.
20. Voskanian KSh, Mitsyn GV, Gaevsky VN. Effectiveness of the biological action of protons and gamma-radiation on cells C3H10T1/2. Aviakosm Ekolog Med. 2005;39(5):50-3. (Russian).
21. Tang JT, Inoue T, Yamazaki H, et al. Comparison of radiobiological effective depths in 65 MeV modulated proton beams. Br J Cancer. 1997;76(2):220-5.
22. Calugaru V, Nauraye C, Noel G, et al. Radiobiological characterization of two therapeutic proton beams with different initial energy spectra used at the Institute Curie Proton Therapy Center in Orsay. Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):1136-43. DOI: 10.1016/j.ijrobp.2010.09.003.
23. Sgura A, Antoccia A, Cherubini R, et al. Micronuclei, CREST-positive micronuclei and cell inactivation induced in Chinese hamster cells by radiation with different quality. Int J Radiat Biol. 2000 Mar;76(3):367-74.
24. Gerelchuluun A, Hong Z, Sun L et al. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines. Int J Radiat Biol. 2011 Jan;87(1):57-70. DOI: 10.3109/09553002.2010.518201.
25. Di Pietro C, Piro S, Tabbi G, Ragusa M, Di Pietro V, Zimmitti V, et al. Cellular and molecular effects of protons: apoptosis induction and potential implications for cancer therapy. Apoptosis. 2006 Jan;11(1):57-66.
26. Green LM, Tran DT, Murray DK, et al. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32. Radiat Res. 2002 Oct;158(4):475-85.
27. Ristic-Fira AM, Todorovic DV, Koricanac LB, et al. Response of a human melanoma cell line to low and high ionizing radiation. Ann NY Acad Sci. 2007 Jan;1095:165-74.
28. Lee KB, Lee JS, Park JW, et al. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp Mol Med. 2008 Feb 29;40(1):118-29.
29. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004 Jul 15;59(4):928-42.
30. Moertel H, Georgi JC, Distel L, et al. Effects of low energy protons on clonogenic survival, DSB repair and cell cycle in human glioblastoma cells and B14 fibroblasts. Radiother Oncol. 2004 Dec;73 Suppl 2:S115-8.
31. Antoccia A, Sgura A, Berardinelli F, et al. Cell cycle perturbations and genotoxic effects in human primary fibroblasts induced by low-energy protons and X/gamma-rays. J Radiat Res. 2009 Sep;50(5):457-68.
32. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 2015;8(2):247-54. DOI: 10.1016/j.jrras.2015.03.003.
33. Childs SK, Kozak KR, Friedmann AM, et al. Proton radiotherapy for parameningeal rhabdomyosarcoma: clinical outcomes and late effects. Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):635-42. DOI: 10.1016/j.ijrobp.2010.11.048.
34. Sheets NC, Goldin GH, Meyer AM, et al. Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA. 2012. Apr 18;307(15):1611-20. DOI: 10.1001/jama.2012.460.
35. Yarmonenko SP, Weinson AA. Radiobiology of Humans and Animals. Moscow: Vysshaya shkola. 2004. 549 p. (Russian).
36. Gerweck LE, Kozin SV. Relative biological effectiveness of proton beam in clinical therapy. Radiother Oncol. 1999 Feb;50(2):135-42.
37. Skarsgard LD. Radiobiology with heavy charged particles: a historical review. Phys Med Biol. 1998 Jul;14 Suppl 1:1-19.
38. Wambersie A, Menzel HG, Andreo P, et al. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies. Radiat Prot Dosimetry. 2011 Feb;143(2-4):481-6. DOI: 10.1093/rpd/ncq410.
39. Kase Y, Yamashita W, Matsufuji N, et al. Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams. J Radiat Res. 2013 May;54(3):485-93. DOI: 10.1093/jrr/rrs110.
40. Gueulette J, Bohm L, Slabbert JP, et al. Proton relative biological effectiveness (RBE) for survival in mice alter thoracic irradiation with fractionated doses. Int J Radiat Oncol Biol Phys. 2000 Jul 1;47(4):1051-8.
41. Tilly N, Johansson J, Isacsson U, et al. The influence of RBE variations in a clinical proton treatment plan for a hypopharynx cancer. Phys Med Biol. 2005 Jun 21;50(12):2765-77.
42. Giovannini G, Böhlen T, Cabal G, et al. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol. 2016 May 17;11:68. DOI: 10.1186/s13014-016-0642-6.
43. Matsumoto Y, Matsuura T, Wada M, et al. Enhanced radiobiological effects at the distal end of a clinical proton beam: in vitro study. J Radiat Res. 2014 Jul;55(4):816-22. DOI: 10.1093/jrr/rrt230.
44. Tronov VA, Vinogradova YuV, Poplinskaya VA, et al. Investigation of the adaptive response of the retina in mice to proton irradiation: connection with DNA repair and photoreceptor cell death. Letters to ECHA. 2015;12(1):241-55 (Russian).
45. Sapetsky AO, Ushakov IB, Sapetski NV, et al. Radiation neurobiology of distant space flights. Successes of Modern Biology. 2017;137(2):165-94 (Russian).
46. Taketa ST, Castle BL, Howard WH et al. Effects of acute exposure to high-energy protons on primates. Radiat Res Suppl. 1967;7:336-59.
47. Bushmanov AYu, Torubarov FS. Neurological aspects of radiation damage. Radiation Medicine. Ed. Ilyin L.A. Vol. 2. – Moscow: Izd. At. 2001; 275-305. (Russian).
48. Darenskaya NG. Reaction of the hematopoietic system. Radiation Medicine. Vol. 1. Moscow: Izd. At. 2004. P. 295-307. (Russian).
49. Darenskaya NG, Kozlova LB, Akoev IG, Nevskaya TF. Relative Biological Efficiency of Radiation. The Time Factor of Exposure. Moscow: Atomizdat. 1968. 376 p. (Russian).
50. Seraya VM. Investigation of hematopoietic systems in experimental animals irradiated with 120 MeV protons: PhD Med: Moscow. 1970. 155 p. (Russian).
51. Ryzhov NI. Biological Action of Protons. In: Ugolev A.M. editors. Biophysical bases of the action of cosmic radiation and accelerator radiation. L.: Science. 1989;60:170-8. (Russian).
52. Shmakova NL, Yarmonenko SP. Cytological analysis of the action of high-energy protons: 1. Cellular degeneration and mitotic activity of the bone marrow of mice subjected to proton irradiation. Radiobiology. 1963;3:291-3. (Russian).
53. Ware JH, Sanzari J, Avery S, et al. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice. Radiat Res. 2010 Sep;174(3):325-30. DOI: 10.1667/RR1979.1.
54. Sanzary JK, Wan XS, Krigsfeld GS, et al. The effects of gamma and proton radiation exposure on hematopoietic cells counts in the ferret model. Gravit Space Res. 2013 Oct;1(1):79-94.
55. Rithidech KN, Honikel LM, Reungpatthanaphong P, et al. Effects of 100 MeV protons delivered at 0,5 or 1 cGy/min on the in vivo induction of early and delayed chromosomal damage. Mutat Res. 2013 Aug 30;756(1-2):127-40. DOI: 10.1016/j.mrgentox.2013.06.001.
56. Gridley DS, Pecaut MJ, Dutta-Roy R, Nelson GA. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: Part I. Immunol Lett. 2002 Jan 1;80(1):55-66.
57. Vorozhtsova SV, Bulynina TM, Molokanov AG, Ivanov AA. Cytogenetic damage to the corneal epithelium of mice due to the in vivo exposure to ionizing radiation with different levels of linear energy transfer. Aviakosm Ekolog Med. 2015;49(1):50-6 (Russian).
58. Ando K, Furusawa Y, Suzuki M, et al. Relative Biological Effectiveness of the 235 MeV Proton Beams at the National Cancer Center Hospital East. J Radiat Res. 2001 Mar;42(1):79-89.
59. Ivanov AA, Molokanov AG, Ushakov IB, et al. Radiobiological effects of total mice irradiation with bragg’s peak protons. Aviakosm Ekolog Med. 2013;47(6):49-54 (Russian).
60. Ivanov AA, Bulynina TM, Molokanov AG, et al. Demonstration of likelihood of the negative effect of physical protection during total proton irradiation of mice. Aviakosm Ekolog Med. 2015;49(4):26-30. (Russian).
61. Maks CJ, Wan XS, Ware JH, et al. Analysis of White Blood Cell Counts in Mice after Gamma- or Proton-Radiation Exposure. Radiat Res. 2011 Aug;176(2):170-6. DOI: 10.1667/RR2413.1.
62. Gueulette J, Slabbert JP, Böhm L, et al. Proton RBE for early intestinal tolerance in mice after fractionated irradiation. Radiother Oncol. 2001 Nov;61(2):177-84.
63. Ilyin LA, Rudny NM, Suvorov NN, Chernov GA. Indralin is an emergency radio protector. Anti-radiation properties, pharmacology, mechanism of action, clinic. Moscow. 1994. 436 p. (Russian).
64. Vasin MV. Means of Prevention and Treatment of Radiation Injuries. Moscow: VTSMK Protection. 2006. 340 p. (Russian).
65. Zherebin YuM, Bondarenko NA, Makan SYu, et al. Pharmacological properties of enomelanin pigments. Reports of the Academy of Sciences of the Ukrainian SSR. Series 5. 1984;(3):64-7. (Russian).
66. Zorina ZA, Poletaeva II. Zoopsychology. Elementary thinking of animals: study guide. Moscow: Aspect-Press. 2008. 320 p. (Russian).
67. Ivanov AA, Andrianova IE, Bulynina TM, et al. Pharmacological effects of melanin in irradiated mice. Medical Radiology and Radiation Safety. 2015;60(5):5-11. (Russian).
68. Ivanov AA, Abrosimova AN, Bulynina TM. Effects of the vaccine Grippol on resistance of mice after irradiation by protons. Saratov. Nauch.-Med. Zh. 2015;11(4):656-8. (Russian).
69. Ambesi-Impiombato FS, Ivanov AA, Mancini A, et al. Effect of recombinant manganese superoxide dismutase (rMnSOD) on the hematologic status in mice irradiated by protons. Medical Radiology and Radiation Safety. 2014;59(6):5-11.
70. Lyakhova KN, Ivanov AA, Molokanov AG, et al. Effect of neuropeptide semax on the exploratory behavior reaction and strength of skeletal musculature of proton-irradiated mice. Aviakosm Ekolog Med. 2018;52(4):71-6. (Russian).
Для цитирования: Иванов А.А., Бычкова Т.М., Никитенко О.В., Ушаков И.Б. Радиобиологические эффекты протонов // Медицинская радиология и радиационная безопасность. 2019. Т. 64. № 3. С. 19–31.