Медицинская радиология и радиационная безопасность, 2014. Том 59. № 5. С. 37-54

ЯДЕРНАЯ МЕДИЦИНА

И.П. Асланиди1, Д.М. Пурсанова1, О.В. Мухортова1, Т.А. Катунина1, О.Б. Карякин2, В.А. Бирюков2

РОЛЬ ПЭТ/КТ С 11С-/18F-ХОЛИНОМ В РАННЕЙ ДИАГНОСТИКЕ ПРОГРЕССИРОВАНИЯ РАКА ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ

1. Научный центр сердечно-сосудистой хирургии им. А.Н. Бакулева РАМН, Москва. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. ; 2. Медицинский радиологический научный центр Минздрава РФ, Обнинск

СОДЕРЖАНИЕ

  1. Введение
  2. Методы диагностики рецидива рака предстательной железы (РПЖ)

      2.1. Уровень ПСА и его кинетика у пациентов с биохимическим рецидивом

      2.2. Трансректальное ультразвуковое исследование

      2.3. Остеосцинтиграфия

      2.4. Компьютерная томография

      2.5. Магнитно-резонансная томография

  1. ПЭТ/КТ с 18F-фтордезоксиглюкозой (18F-ФДГ)

      3.2. ПЭТ/КТ с 11C-ацетатом

      3.3. ПЭТ/КТ с 11C-метионином

      3.4. ПЭТ/КТ с 18F-фтордигидротестостероном (18F-ФДГТ)

      3.5. ПЭТ/КТ с 18F-фтортимидином (18F-ФЛТ)

      3.6. ПЭТ/КТ с 18F-фторметиларабинофуранозилурацилом (ФМАУ)

      3.7. ПЭТ/КТ с 68Ga-простат-специфическим мембранным антигеном (ПСМА)

  1. ПЭТ/КТ с 11С-/18F-холином

      4.1. ПЭТ/КТ с 11С-/18F-холином в первичной диагностике РПЖ

      4.2. ПЭТ/КТ с 11С-/18F-холином в стадировании РПЖ

      4.3. ПЭТ/КТ с 11С-/18F-холином в диагностике рецидива РПЖ

      4.4. ПЭТ/КТ с 11С-/18F-холином в диагностике метастазов в кости у больных РПЖ

  1. Выводы.

Ключевые слова: рак простаты, ПЭТ / КТ, C-холин, 18F-холин, ПСА, кинетика ПСА

СПИСОК ЛИТЕРАТУРЫ

  1. Чиссов В.И., Русаков И.Г. Заболеваемость раком предстательной железы в Российской Федерации. // Экспериментальная и клиническая урология, 2011. Т. 3. № 2. С. 6–7.
  2. Jemal A., Siegel R., Ward E. et al. // Cancer statistics, 2008. CA Cancer J. Clin., 2008, vol. 58, no. 2, pp. 71–96.
  3. Kataja V.V., Bergh J. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of prostate cancer. // Ann. Oncol., 2005, vol. 16, suppl. 1, pp. 34–36.
  4. Edge S.B., Byrd D.R., Compton C.C. et al. The utility of 11C-Choline PET/CT for imaging prostate cancer: a pictorial guide. // AJCC Cancer Staging Manual, 2010, 7th ed., New York, Springer-Verlag.
  5. Freedland S.J., Presti Jr. J.C., Amling C.L. et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. // Urology, 2003, vol. 61, pp. 736–41.
  6. Han M., Partin A.W., Zahurak M. et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. // J. Urol., 2003, vol. 169, pp. 517–523.
  7. Rinnab L., Mottaghy F.M., Blumstein N.M. et al. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. // BJU Int., 2007, vol. 100, pp. 786–793.
  8. Chism D.B., Hanlon A.L., Horwitz E.M. et al. A comparison of the single and double factor high-risk models for risk assignment of prostate cancer treated with 3D conformal radiotherapy. // Int. J. Radiat. Oncol. Biol. Phys., 2004, vol. 59, pp. 380–385.
  9. Liauw S.L. Salvage radiotherapy for biochemical failure of radical prostatectomy: a single-institution experience. // Urology, 2003, vol. 61, pp. 1204–1210.
  10. Laufer M. Management of patients with rising prostate-specific antigen after radical prostatectomy. // Urology, 2000, vol. 55, pp. 309–315.
  11. Heidenreich A., Bastian P.J., Bellmunt J. et al. Guidelines on Prostate Cancer. European Association of Urology, Arnhem, 2012.
  12. National Collaborating Centre for Cancer. Managing relapse after radical treatment. In Prostate cancer: diagnosis and treatment. // NICE Clinical Guidelines, Cardiff, 2008, no. 58, chap. 5, pp. 42–48.
  13. Cher M.L., Bianco F.J., Lam J.S. et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. // J. Urol., 1998, vol. 160, no. 4, pp. 1387–1391.
  14. Kane C.J., Amling C.L., Johnstone P.A. et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. // Urology, 2003, vol. 61, no. 3, pp. 607–611.
  15. Olsson A.Y., Bjartell A., Lilja H., Lundwall A. Expression of prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2) in ileum and other extraprostatic tissues. // Int. J. Cancer, 2005, vol. 113, no. 2, pp. 290–297.
  16. Partin A.W., Pearson J.D., Landis P.K. et al. Evaluation of serum prostate-specific antigen velocity after radical prostatectomy to distinguish local recurrence from distant metastases. // Urology, 1994, vol. 43, no. 5, pp. 649–659.
  17. Dotan Z.A., Bianco F.J., Jr. et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. // JCO, 2005, vol. 23, no. 9, pp. 1962–1968.
  18. Ravizzini G., Turkbey B., Kurdziel K., Choyke PL. New horizons in prostate cancer imaging. // Eur. J. Radiol., 2009, vol. 70, pp. 212–226.
  19. Apolo A.B., Pandit-Taskar N., Morris M.J. Novel tracers and their development for the imaging of metastatic prostate cancer. // J. Nucl. Med., 2008, vol. 49, pp. 2031–2041.
  20. Arlen P.M., Bianco F., Dahut W.L. et al. Prostate Specific Antigen Working Group guidelines on prostate specific antigen doubling time. // J. Urol., 2008, vol. 179, no. 6, pp. 2181–2185.
  21. Moul J.W. Prostate specific antigen only progression of prostate cancer. // J. Urol., 2000, vol. 163, pp. 1632–1642.
  22. Hanks G.E., D’Amico A., Epstein B.E., Schultheiss T.E. Prostate specific antigen doubling time in patients with prostate cancer: a potential useful reflection of tumour doubling time. // Int. J. Radiat. Oncol. Biol. Phys., 1993, vol. 27, pp. 125–127.
  23. Roberts S.G., Blute M.L., Bergstralh E.J. et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. // Mayo Clin. Proc., 2001, vol. 76, pp. 576–581.
  24. King C.R., Presti J.C., Brooks J.D. et al. Postoperative prostate-specific antigen velocity independently predicts for failure of salvage radiotherapy after prostatectomy. // Int. J. Radiat. Oncol. Biol. Phys., 2008, vol. 70, pp. 1472–1477.
  25. Salomon C.G., Flisak M.E., Olson M.C. et al. Radical prostatectomy: transrectal sonographic evaluation to assess for local recurrence. // Radiology, 1993, vol. 189, no. 3, pp. 713–719.
  26. Wasserman N.F., Kapoor D.A., Hildebrandt W.C. et al. Transrectal US in evaluation of patients after radical prostatectomy. Part II. Transrectal US and biopsy findings in the pres.ence of Residual and early recurrent prostatic cancer. // Radiology, 1992, vol. 185, no. 2, pp. 367–372.
  27. Foster L.S., Jajodia P., Fournier G. et al. The value of prostate specific antigen and transrectal ultrasound guided biopsy in detecting prostatic fossa recurrences following radical prostatectomy. // J. Urol., 1993, vol. 149, no. 5, pp. 1024–1028.
  28. Critz F.A. Prostate specific antigen nadir achieved by men apparently cured of prostate cancer by radiotherapy. // J. Urol., 1999, vol. 161, pp. 1199–1203.
  29. Connolly J.A., Shinohara K., Presti J.C. et al. Local recurrence after radical prostatectomy: characteristics in size, location, and relationship to prostate-specific antigen and surgical margins. // Urology, 1996, vol. 47, no. 2, pp. 225–231.
  30. Deliveliotis C., Manousakas T., Chrisofos M. et al. Diagnostic efficacy of transrectal ultrasound-guided biopsy of the prostatic fossa in patients with rising PSA following radical prostatectomy. // World J. Urol., 2007, vol. 25, no. 3, pp. 309–313.
  31. Leventis A.K., Shariat S.F., Slawin K.M. Local recurrence after radical prostatectomy: correlation of US features with prostatic fossa biopsy findings. // Radiology, 2001, vol. 219, no. 2, pp. 432–439.
  32. Shekarriz B., Upadhyay J., Wood D.P. et al. Vesicourethral anastomosis biopsy after radical prostatectomy: predictive value of prostate-specific antigen and pathologic stage. // Urology, 1999, vol. 54, no. 6, pp. 1044–1048.
  33. Naya Y., Okihara K., Evans R.B., Babaian R.J. Efficacy of prostatic fossa biopsy in detecting local recurrence after radical prostatectomy. // Urology, 2005, vol. 66, no. 2, pp. 350–355.
  34. Bott S.R., Ahmed H.U., Hindley R.G. et al. The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer. // Brit. J. Urol. Int., 2010, vol. 106, pp. 1607–1611.
  35. Beheshti M., Vali R., Waldenberger P. et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. // Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, pp. 1766–1774.
  36. Okotie O.T., Aronson W.J., Wieder J.A. et al. Predictors of metastatic disease in men with biochemical failure following radical prostatectomy. // J. Urol., 2004, vol. 171, no. 6, pp. 2260–2264.
  37. Prostate-Specific Antigen Best Practice Statement: 2009 Update. // Eur. Urol., 2012, vol. 61, pp. 8–10.
  38. Older R.A., Lippert M.C., Gay S.B. et al. Computed tomography appearance of the prostatic fossa following radical prostatectomy. // Acad. Radiol., 1995, vol. 2, no. 6, pp. 470–474.
  39. Kramer S., Gorich J., Gottfried H.W. et al. Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy. // Brit. J. Radiol., 1997, vol. 70, pp. 995–999.
  40. Flanigan R.C., McKay M.T., Olson M. et al. Limited efficacy of preoperative computed tomographic scanning for the evaluation of lymph node metastasis in patients before radical prostatectomy. // Urology, 1996, vol. 48, pp. 428–432.
  41. Seltzer M.A., Barbaric Z., Belldegrun A. et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. // J. Urol., 1999, vol. 162, pp. 1322–1328.
  42. Oyen R.H., Van Poppel H.P., Ameye F.E. et al. Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: prospective study of 285 patients. // Radiology, 1994, vol. 190, pp. 315–322.
  43. Hricak H., Schoder H., Pucar D. et al. Advances in imaging in the postoperative patient with a rising prostatespecific antigen level. // Semin. Oncol., 2003, vol. 30, no. 5, pp. 616–634.
  44. Taoka T., Mayr N.A., Lee H.J. et al. Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. // Amer. J. Roentgenol., 2001, vol. 176, no. 6, pp. 1525–1530.
  45. Turner J.W., Hawes D.R., Williams R.D. Magnetic Resonance imaging for detection of prostate cancer metastatic to bone. // J. Urol., 1993, vol. 149, no. 6, pp. 1482–1484.
  46. Sella T., Schwartz L.H., Swindle P.W. et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. // Radiology, 2004, vol. 231, no. 2, pp. 379–385.
  47. Hövels A.M., Heesakkers R.A., Andag E.M. et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. // Clin. Radiol., 2008, vol. 63, pp. 387–395.
  48. Silverman J.M., Krebs T.L. MR imaging evaluation with a transrectal surface coil of local recurrence of prostatic cancer in men who have undergone radical prostatectomy. // Amer. J. Roentgenol., 1997, vol. 168, no. 2, pp. 379–385.
  49. Casciani E., Polettini E., Carmenini E. et al. Endorectal and dynamic contrast-enhanced MRI for detection of local recurrence after radical prostatectomy. // Amer. J. Roentgenol., 2008, vol. 190, no. 5, pp. 1187–1192.
  50. Cirillo S., Petracchini M., Scotti L. et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. // Eur. Radiol., 2009, vol. 19, no. 3, pp. 761–769.
  51. Sciarra A., Panebianco V., Salciccia S. et al. Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. // Eur. Urol., 2008, vol. 54, no. 3, pp. 589–600.
  52. Pucar D., Sella T., Schoder H. The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. // Curr. Opin. Urol., 2008, vol. 18, no. 1, pp. 87–97.
  53. Kurhanewicz J., Vigneron D.B., Hricak H. et al. Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. // Radiology, 1996, vol. 200, no. 2, pp. 489–496.
  54. Coakley F.V., Teh H.S., Qayyum A. et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. // Radiology, 2004, vol. 233, no. 2, pp. 441–448.
  55. Westphalen A.C., Coakley F.V., Roach M. et al. Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T endorectal MR imaging and MR spectroscopic imaging for detection. // Radiology, 2010, vol. 256, no. 2, pp. 485–492.
  56. Haider M.A., Chung P., Sweet J. et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. // Int. J. Radiat. Oncol. Biol. Phys., 2008, vol. 70, no. 2, pp. 425–430.
  57. Rouviere O., Valette O., Grivolat S. et al. Recurrent prostate cancer after external beam radiotherapy: value of contrast-enhanced dynamic MRI in localizing intraprostatic tumor--correlation with biopsy findings. // Urology, 2004, vol. 63, no. 5, pp. 922–927.
  58. Kim C.K., Park B.K., Park W., Kim S.S. Prostate MR imaging at 3T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. // Tamsel., S. 2010, vol. 35, no. 2, pp. 246–252.
  59. Bammer R. Basic principles of diffusion-weighted imaging. // Eur. Radiol., 2003, vol. 45, pp. 169–184.
  60. Kim C.K., Park B.K., Kim B. Diffusion-weighted MRI at 3 T for the evaluation of prostate cancer. // Amer. J. Roentgenol., 2010, vol. 194, no. 6, pp. 1461–1469.
  61. Nakanishi K., Kobayashi M., Nakaguchi K. et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. // Magn. Reson. Med. Sci., 2007, vol. 6, no. 3, pp. 147–155.
  62. Kim C.K., Park B.K., Lee H.M. Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. // Kim., C. K, 2009, vol. 29, no. 2, pp. 391–397.
  63. Harisinghani M.G., Barentsz J., Hahn P.F. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. // N. Engl. J. Med., 2003, vol. 348, no. 25, pp. 2491–2499.
  64. Gillies R.J., Robey I., Gatenby R.A. Causes and consequences of increased glucose metabolism of cancers. // J. Nucl. Med., 2008, vol. 49, suppl. 6, pp. 24–42.
  65. Jadvar H., Pinski J., Quinn D. et al. PET/CT with FDG in metastatic prostate cancer: castratesensitivevs. castrate-resistant disease. // J. Nucl. Med., 2009, vol. 50, pp. 120.
  66. Jadvar H., Desai B., Ji L. et al. Comparison of Imaging­ and psa­based treatment response criteria in metastatic prostate cancer: a preliminary analysis. // RSNA 97th Scientific Assembly & Ann Meeting, Chicago, IL, 2011.
  67. Effert P.J., Bares R., Handt S. et al. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. // J. Urol., 1996, vol. 155, no. 3, pp. 994–998.
  68. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. // J. Nucl. Med., 2011, vol. 52, no.1, pp. 81–89.
  69. Hofer C., Laubenbacher C., Block T. et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. // Eur. Urol., 1999, vol. 36, pp. 31–35.
  70. Liu I.J., Zafar M.B., Lai Y.H. et al. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. // Urology, 2001, vol. 57, pp. 108–111.
  71. Fanti S., Nanni C., Ambrosini V. et al. PET in genitourinary tract cancers. // Eur. J. Nucl. Med. Mol. Imaging, 2007, vol. 51, pp. 260–271.
  72. Chang C.H., Wu H.C., Tsai J.J. et al. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. // Urol. Int., 2003, vol. 70, pp. 311–315.
  73. Schoder H., Herrmann K., Gonen M. et al. 2-[18F] fluoro-2-deoxyglucose positron emission tomography for detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. // Clin. Cancer Res., 2005, vol. 11, pp. 4761–4769.
  74. Effert P., Beniers A.J., Tamimi Y. et al. Expression of glucose transporter 1 (GLUT-1) in cell lines and clinical specimen from human prostate adenocarcinoma. // Anticancer Res., 2004, vol. 24, pp. 3057.
  75. Oyama N., Akino H., Suzuki Y. et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. // Nucl. Med. Commun, 2001, vol. 22, pp. 963–969.
  76. Jadvar H., Desai B., Quinn D. Treatment response assessment of metastatic prostate cancer with FDG PET/CT. // J. Nucl. Med., 2011, vol. 52, suppl. 1, pp. 431.
  77. Oyama N., Akino H., Suzuki Y. et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. // Mol. Imaging Biol., 2002, vol. 4, pp. 99–104.
  78. Meirelles G.S., Schoder H., Ravizzini G.C. et al. Prognostic value of baseline [18F]fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. // Clin. Cancer Res., 2010, vol. 16, pp. 6093–6099.
  79. Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. // Prostate Cancer and Prostatic Diseases, 2006, vol. 9, pp. 230–234.
  80. Soloviev D., Fini A., Chierichetti F. et al. PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. // Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, pp. 942–949.
  81. Oyama N., Akino H., Kanamaru H. et al. 11С-acetate PET imaging of prostate cancer. // J. Nucl. Med., 2002, vol. 43, pp. 181–186.
  82. Oyama N., Miller T.R., Dehdashti F. et al. 11С-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. // J. Nucl. Med., 2003, vol. 44, pp. 549–555.
  83. Sandblom G., Sorensen J., Lundin N. et al. Positron emission tomography with 11C-acetate for tumor detection and localization in patients with prostate specific antigen relapse after radical prostatectomy. // Urology, 2006, vol. 67, pp. 996–1000.
  84. Nanni C., Castellucci P., Farsad M. et al. 11С/18F-choline PET or 11С/18F-acetate PET in prostate cancer: may a choice be recommended? // Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, pp. 253–263.
  85. Kotzerke J., Volkmer B.G., Glatting G. et al. Individual comparison of [11C]acetate and of [11C]choline PET for detection of metastases of prostate cancer. // Nuklearmidizin, 2003, vol. 42, no. 1, pp. 25–30.
  86. Nunez R., Macapinlac H.A., Yeung H.W. et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. // J. Nucl. Med., 2002, vol. 43, pp. 46–55.
  87. Shiiba M., Ishihara K., Kimura G. et al. Evaluation of primary prostate cancer using 11C-methionine-PET/CT and 18F-FDG-PET/CT. // Ann. Nucl. Med., 2012, vol. 26, no. 2, pp. 138–145.
  88. Stanbrough M., Bubley G.J., Ross K. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. // Cancer Res., 2006, vol. 66, pp. 2815–2825.
  89. Chen C.D., Welsbie D.S., Tran C. et al. Molecular determinants of resistance to antiandrogen therapy. // Nat. Med., 2004, vol. 10, pp. 33–39.
  90. Larson S.M., Morris M., Gunther I. et al. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. // J. Nucl. Med., 2004, vol. 45, pp. 366–373.
  91. Dehdashti F., Picus J., Michalski J.M. et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma. // Eur. J. Nucl. Med. Mol. Imaging, 2005, vol. 32, pp. 344–350.
  92. Scher I., Beer T.M., Higano C.S. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. // Lancet, 2010, vol. 375, pp. 1437–1446.
  93. Mankoff D.A., Shields A.F., Krohn K.A. PET imaging of cellular proliferation. // Radiol. Clin. North Amer., 2005, vol. 43, pp. 153–167.
  94. Couturier O., Leost F., Campone M. et al. Is 3’-deoxy-3’-[18F]fluorothymidine ([18F]-FLT) the next tracer for routine clinical PET after [18F]-FDG? // Bull. Cancer, 2005, vol. 92, pp. 789–798.
  95. Nimmagadda S., Shields A.F. The role of DNA synthesis imaging in cancer in the era of targeted therapeutics. // Cancer Metastasis Rev., 2008, vol. 27, pp. 575–587.
  96. Kukuk D., Reischl G., Raguin O. et al. Assessment of PET tracer uptake in hormone-independent and hormone-dependent xenograft prostate cancer mouse models. // J. Nucl. Med., 2011, vol. 52, pp. 1654–1663.
  97. Oyama N., Ponde D., Dence C. et al. Monitoring of therapy in androgendependent prostate tumor model by measuring tumor proliferation. // J. Nucl. Med., 2004, vol. 45, pp. 519–525.
  98. Oyama N., Hasegawa Y., Kiyono Y. et al. Early response assessment in prostate carcinoma by 18F-fluorothymidine following anticancer therapy with docetaxel using preclinical tumor models. // Eur. J. Nucl. Med. Mol. Imaging, 2011, vol. 38, pp. 81–89.
  99. Fanucchi M.P., Leyland-Jones R., Young C.W. et al. Phase I trial of 1-(2’-deoxy-2’-fluoro-1-beta-D-arabinofuranosyl)-5-methyluracil (FMAU). // Cancer Treat. Rep., 1985, vol. 69, pp. 55–59.
  100. Shields A.F. Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. // Mol. Imaging Biol., 2006, vol. 8, pp. 141–150.
  101. Jadvar H., Yap L.I., Park R. et al. [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (18FFMAU) in prostate cancer: initial preclinical observations. // Mol. Imaging, 2012, vol. 11, no. 5, pp. 426–432.
  102. Heston, W. Bedeutung des prostataspezifischen Membranantigens (PSMA). // Urologe Ausgabe A, 1996, vol. 35, no. 5, pp. 400–407.
  103. Gregorakis A.K., Homes E.H., Murphyet G.P. Prostate-specific membrane antigen: current and future utility. // Sem. Urol. Oncol., 1998, vol. 16, pp. 2–12.
  104. Silver D.A. Prostate-specific membrane antigen expression in normal and malignant human tissues. // Clin. Cancer Res., 1997, vol. 3, pp. 81–85.
  105. Afshar-Oromieh A., Malcher A., Eder M. et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. // Eur. J. Nucl. Med. Mol. Imaging, 2013, vol. 40, pp. 486–495.
  106. Apolo A.B., Pandit-Taskar N., Morris M.J. Novel tracers and their development for the imaging of metastatic prostate cancer. // J. Nucl. Med., 2008, vol. 49, pp. 2031–2041.
  107. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. // J. Nucl. Med., 2011, vol. 52, pp. 81–89. 
  108. Farsad M., Schiavina R., Castellucci P. et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. // J. Nucl. Med., 2005, vol. 46, pp. 1642–1649. 
  109. Scher B., Seitz M., Albinger W. et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. // Eur. J. Nucl. Med. Mol. Imaging, 2007, vol. 34, pp. 45–53.
  110. Giovacchini G., Picchio M., Coradeschi E. et al. [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. // Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, pp. 1065–1073.
  111. Martorana G., Schiavina R., Corti B. et al. 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. // J. Urol., 2006, vol. 176, pp. 954–960.
  112. Schmid D.T., John H., Zweifel R. et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. // Radiology, 2005, vol. 235, pp. 623–628.
  113. Yoshida S., Nakagomi K., Goto S. et al. 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. // Urol. Int., 2005, vol. 74, pp. 214–220.
  114. Yamaguchi T., Lee J., Uemura H. et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. // Eur. J. Nucl. Med. Mol. Imaging, 2005, vol. 32, pp. 742–748.
  115. Souvatzoglou M., Weirich G., Schwarzenboeck S. et al. The sensitivity of [11C]Choline PET/CT to localize prostate cancer depends on the tumor configuration. // Clin. Cancer Res., 2011, vol. 17, pp. 3751–3759. 
  116. Beheshti M., Imamovic L., Broinger G. et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. // Radiology, 2010, vol. 254, pp. 925–933.
  117. de Jong I.J., Pruim J., Elsinga P.H. et al. Visualization of prostate cancer with 11C-choline positron emission tomography. // Eur. Urol., 2002, vol. 42, pp. 18–23.
  118. de Jong I.J., Pruim J., Elsinga P.H. et al. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. // J. Nucl. Med., 2003, vol. 44, pp. 331–335. 
  119. Kotzerke J., Prang J., Neumaier B. et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. // Eur. J. Nucl. Med., 2000, vol. 27, pp. 1415–1419. 
  120. Schiavina R., Scattoni V., Castellucci P. et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. // Eur. Urol., 2008, vol. 54, pp. 392–401.
  121. Poulsen M.H., Bouchelouche K., Gerke O. et al. [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study. // BJU Int., 2010, vol. 106, pp. 639–643.
  122. Scattoni V., Picchio M., Suardi N. et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. // Eur. Urol., 2007, vol. 52, pp. 423–429.
  123. Husarik D.B., Mirabell R., Dubs M. et al. Evaluation of 18F-choline PET/CT for staging and restaging of prostate cancer. // Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, pp. 253–263.
  124. Schilling D., Schlemmer H.P., Wagner P.H. et al. Histological verification of 11C-choline-positron emission/computed tomography-positive lymph nodes in patients with biochemical failure after treatment for localized prostate cancer. // BJU Int., 2008, vol. 102, pp. 446–451.
  125. Rinnab L., Buchegger F., Simon J. et al. [11C]choline PET/CT for targeted salvage lymph node dissection in patients with biochemical recurrence after primary curative therapy for prostate cancer. // Urol. Int., 2008, vol. 81, pp. 191–197.
  126. Krause B.J., Souvatzoglou M., Tuncel M. et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. // Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, pp. 18–23.
  127. Giovacchini G., Picchio M., Coradeschi E. et al. Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy. // Eur. J. Nucl. Med. Mol. Imaging, 2010, vol. 37, pp. 301–309.
  128. Castellucci P., Fuccio C., Nanni C. et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/ CT detection rate in patients with biochemical relapse after radical prostatectomy. // J. Nucl. Med., 2009, vol. 50, no. 9, pp. 1394–1400.
  129. Giovacchini G., Picchio M., Parra R.G. et al. Prostate-specific antigen velocity versus prostate specific antigen doubling time for prediction of 11C choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy. // Clin. Nucl. Med., 2012, vol. 37, pp. 325–331.
  130. Giovacchini G., Picchio M., Scattoni V. et al. PSA doubling time for prediction of 11C Choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. // Eur. J. Nucl. Med. Mol. Imaging, 2010, vol. 37, pp. 1106–1116.
  131. Castellucci P., Fuccio C., Rubello D. et al. Is there a role for 11C-Choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? // Eur. J. Nucl. Med. Mol. Imaging, 2011, vol. 38, pp. 55–63.
  132. Breeuwsma A.J., Rybalov M., Leliveld A.M. et al. Correlation of [11C]choline PET-CT with time to treatment and disease-specific survival in men with recurrent prostate cancer after radical prostatectomy. // Q. J. Nucl. Med. Mol. Imaging, 2012, vol. 56, pp. 440–446.
  133. Rybalov M., Breeuwsma A.J., Leliveld A.M. et al. Impact of total PSA, PSA doubling time and PSA velocity on detection rates of 11C-Choline positron emission tomography in recurrent prostate cancer. // World J. Urol., 2013, vol. 31, no. 2, pp. 319–323.
  134. Schillaci O., Calabria F., Tavolozza M. et al. Influence of PSA, PSA velocity and PSA doublingtime on contrast-enhanced 18F-choline PET/CT detection rate in patients with rising PSA after radical prostatectomy. // Eur. J. Nucl. Med. Mol. Imaging, 2012, vol. 39, pp. 589–596.
  135. Graute V., Jansen N., Ubleis C. et al. Relationship between PSA kinetics and [18F]fluoro-choline PET/CT detection rates of recurrence in patients with prostate cancer after total prostatectomy. // Eur. J. Nucl. Med. Mol. Imaging, 2012, vol. 39, pp. 271–282.
  136. Carroll P. Rising PSA after a radical treatment. // Eur. Urol., 2001, vol. 40, suppl. 2, pp. 9–16.
  137. Dong J.T., Rinker-Schaeffer C.W., Ichikawa T. et al. Prostate cancer — biology of metastasis and its clinical implications. // World J. Urol., 1996, vol. 14, pp. 182–189.
  138. McMurtry C.T., McMurtry J.M. Metastatic prostate cancer: complications and treatment. // J. Amer. Geriatr. Soc., 2003, vol. 51, pp. 1136–1142.
  139. Yu K.K., Hawkins R.A. The prostate: diagnostic evaluation of metastatic disease. // Radiol. Clin. North Amer., 2000, vol. 38, pp. 139–157.
  140. Carlin B.I., Andriole G.L. The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. // Cancer, 2000, vol. 88, pp. 2989–2994.
  141. Остеосцинтиграфия в выявлении костных метастазов. // В кн.: «Национальное руководство по радионуклидной диагностике». Под ред. Лишманова Ю.Б., Чернова В.И.— Томск: SST, 2010. Т. 2. С. 256–258.
  142. Whitmore W.F. Natural history and staging of prostate cancer. // Urol. Clin North Amer., 1984, vol. 11, pp. 205–220.
  143. Pound C.R., Partin A.W., Eisenberger M.A. et al. Natural history of progression after PSA elevation following radical prostatectomy. // JAMA, 1999, vol. 281, pp. 1591–1597.
  144. Beheshti M., Vali R., Waldenberger P. et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. // Mol. Imaging Biol., 2009, vol. 11, pp. 446–454.
  145. Fuccio C., Castellucci P., Schiavina R. et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. // Ann. Nucl. Med., 2010, vol. 24, pp. 485–492.
  146. McCarthy M., Siew T., Campbell A. et al. 18F-fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. // Eur. J. Nucl. Med. Mol. Imaging, 2011, vol. 38, pp. 14–22.
  147. Fuccio C., Castellucci P., Schiavina R. et al. Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. // Eur. J. Radiol, 2012, vol. 81, pp. 893–896.
  148. Picchio M., Spinapolice E.G., Fallanca F. et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. // Eur. J. Nucl. Med. Mol. Imaging, 2012, vol. 39, pp. 13–26.
  149. Beheshti M., Vali R., Waldenberger K. et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. // Mol. Imaging Biol., 2010, vol. 12, pp. 360.
  150. Amanie J., Jans H.S., Wuest M. et al. Analysis of intraprostatic therapeutic effects in prostate cancer patients using [11C]-choline PET/CT after external-beam radiation therapy. // Curr. Oncol., 2013, vol. 20, pp. 104–110.
  151. Challapalli A., Barwick T., Tomasi G. et al. the potential of [11C]choline-PET/CT as a novel imaging biomarker for predicting early treatment Response in prostate cancer. // Nucl. Med. Commun, 2014, vol. 35, pp. 20–29.