Медицинская радиология и радиационная безопасность. 2025. Том 70. № 4

DOI:10.33266/1024-6177-2025-70-4-25-32

Е.А. Кодинцева1, А.А. Аклеев2

РОЛЬ КЛЕТОК-ЭФФЕКТОРОВ ВРОЖДЕННОГО И АДАПТИВНОГО ИММУНИТЕТА В ПАТОГЕНЕЗЕ РАДИАЦИОННО-ИНДУЦИРОВАННОГО КАНЦЕРОГЕНЕЗА. ОБЗОР (ЧАСТЬ 1)

1 Уральский научно-практический центр радиационной медицины ФМБА России, Челябинск

2 Южно-Уральский государственный медицинский университет Минздрава России, Челябинск

Контактное лицо: Екатерина Александровна Кодинцева, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

 

СОДЕРЖАНИЕ

Введение

1. Компоненты врожденного иммунитета и канцерогенез

2. Опухолеассоциированные клетки миелоидного происхождения и миелоидные супрессорные клетки

3. Опухолеассоциированные нейтрофилы

4. Опухолеассоциированные моноциты/макрофаги

5. Натуральные киллеры микроокружения злокачественных новообразований

6. Заключение

Ключевые слова: клетки периферической крови, радиационное воздействие, злокачественные новообразования, канцерогенез, врожденный иммунитет, адаптивный иммунитет, межклеточная кооперация, радиочувствительность

Для цитирования: Кодинцева Е.А., Аклеев А.А. Роль клеток-эффекторов врожденного и адаптивного иммунитета в патогенезе радиационно-индуцированного канцерогенеза. Обзор (часть 1) // Медицинская радиология и радиационная безопасность. 2025. Т. 70. № 4. С. 25–32. DOI:10.33266/1024-6177-2025-70-4-25-32

 

Список литературы

1. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-Related Inflammation. Nature. 2008;454;7203:436-444. doi: 10.1038/nature07205.

2. Weinstein I.B. Mitogenesis is Only One Factor in Carcinogenesis. Science. 1991;251; 4992:387-388. doi: 10.1126/science.1989073.

3. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006). Report to the General Assembly, with Scientific Annexes. V. 2. Annex C: Non-targeted and Delayed Effects of Exposure to Ionizing Radiation. New York, United Nations, 2008. 80 p.

4. Голивец Т.П., Коваленко Б.С., Волков Д.В. Актуальные аспекты радиационного канцерогенеза: проблема оценки эффектов воздействия «малых» доз ионизирующего излучения. Аналитический обзор // Научные ведомости Белгородского государственного университета. Медицина. Фармация». 2012. Т.19. №16. С. 5-13 [Golivets T.P., Kovalenko B.S., Volkov D.V. Current Aspects of Radiation Carcinogenesis: the Problem of Assessing the Effects of Exposure to «Small» Doses of Ionizing Radiation. Analytical Review. Nauchnyye Vedomosti Belgorodskogo Gosudarstvennogo Universiteta. Meditsina. Farmatsiya = Scientific Bulletin of the Belgorod State University. Medicine. Pharmacy. 2012;19;16:5-13 (In Russ.)]. 

5. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR 2020/2021). Report to the General Assembly, with Scientific Annexes: Sources, Effects and Risks of Ionizing Radiation. New York, United Nations, 2021. 244 р.

6. Аклеев А.В., Аклеев А.А., Андреев С.С., Блинова Е.А. и др. Последствия радиоактивного загрязнения реки Течи: Монография / Под ред. А.В.Аклеева. Челябинск: Книга, 2016. 400 c. [Akleyev A.V., Akleyev A.A., Andreyev S.S., Blinova Ye.A., et al. Posledstviya Radioaktivnogo Zagryazneniya Reki Techi = Consequences of Radioactive Contamination of the Techa River. Monograph. Ed.by A.V.Akleyev. Chelyabinsk, Kniga Publ., 2016. 400 p. (In Russ.)].

7. Крестинина Л.Ю., Силкин С.С., Микрюкова Л.Д., Епифанова С.Б., Аклеев А.В. Риск заболеваемости солидными злокачественными новообразованиями в Уральской когорте аварийно-облучённого населения: 1956-2017 // Радиационная гигиена. 2020. Т.13. №3. С. 6-17 [Krestinina L.Yu., Silkin S.S., Mikryukova L.D., Yepifanova S.B., Akleyev A.V. Risk of Solid Malignant Neoplasms in the Ural Cohort of the Accident-Exposed Population: 1956-2017. Radiatsionnaya Gigiyena = Radiation Hygiene. 2020;13;3:6-17 (In Russ.)]. doi: 10.21514/1998-426X-2020-13-3-6-17.

8. Туков А.Р., Шафранский И.Л., Котеров А.Н., Зиятдинов М.Н., Прохорова О.Н., Михайленко А.М. Оценка радиационного риска смерти от сердечно-сосудистых заболеваний ликвидаторов последствий аварии на ЧАЭС – работников предприятий атомной промышленности по данным о дозах различных видов облучения // Медицинская радиология и радиационная безопасность. 2024. Т.69. №3. С. 53-56 [Tukov A.R., Shafranskiy I.L., Koterov A.N., Ziyatdinov M.N., Prokhorova O.N., Mikhaylenko A.M. Assessment of the Radiation Risk of Death from Cardiovascular Diseases in Liquidators of the Consequences of the Chernobyl Accident - Workers of Nuclear Industry Enterprises Based on Data on Doses of Various Types of Radiation. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost’ = Medical Radiology and Radiation Safety. 2024;69;3:53-56 (In Russ.)]. doi:10.33266/1024-6177-2024-69-3-53-56.

9. Castelo-Branco C., Soveral I. The Immune System and Aging: a Review. Gynecological Endocrinology. 2013;30;1:16-22. doi: 10.3109/09513590.2013.852531.

10. Morrisette-Thomas V., Cohen A.A., Fülöp T., Riesco É., Legault V., Li Q., Milot E., Dusseault-Bélanger F., Ferrucci L. Inflamm-Aging does not Simply Reflect Increases in Pro-Inflammatory Markers. Mechanisms of Ageing and Development. 2014;139:49-57. doi: 10.1016/j.mad.2014.06.005.

11. Jackaman C., Tomay F., Duong L., Abdol Razak N.B., Pixley F.J., Metharom P., Nelson D.J. Aging and Cancer: the Role of Macrophages and Neutrophils. Ageing Research Reviews. 2017;36:105-116. doi: 10.1016/j.arr.2017.03.008.

12. Kim J.H., Brown S.L., Gordon M.N. Radiation-Induced Senescence: Therapeutic Opportunities. Radiation Oncology. 2023;18;10:1-11. doi:10.1186/s13014-022-02184-2.

13. Coffelt S.B., Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hau C.S., Verstegen N.J.M., Ciampricotti M., Hawinkels L.J.A.C., Jonkers J., de Visser K.E. IL-17-Producing Gammadelta T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature. 2015;522:345-348. doi: 10.1038/nature14282.

14. Bronte V., Brandau S., Chen S.H. Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I. Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nature Communications. 2016;7:12150. doi: 10.1038/ncomms12150.

15. Патышева М.Р., Стахеева М.Н., Ларионова И.В., Тарабановская Н.А., Григорьева Е.С., Слонимская Е.М., Кжышковска Ю.Г., Чердынцева Н.В. Моноциты при злокачественных новообразованиях: перспективы и точки приложения для диагностики и терапии // Бюллетень сибирской медицины. 2019. Т.18. №1. C. 60-75 [Patysheva M.R., Stakheyeva M.N., Larionova I.V., Tarabanovskaya N.A., Grigor’yeva Ye.S., Slonimskaya Ye.M., Kzhyshkovska YU.G., Cherdyntseva N.V. Monocytes in Malignant Neoplasms: Prospects and Application Points for Diagnostics and Therapy. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2019;18;1:60-75 (In Russ.)]. doi: 10.20538/1682-0363-2019-1-60-75.

16. Strauss L., Sangaletti S., Consonni F.M., Szebeni G., Morlacchi S., Totaro M.G., Porta C., Anselmo A., Tartari S., Doni A., Zitelli F., Tripodo C., Colombo M.P., Sica A. RORC1 Regulates Tumor-Promoting “Emergency” Granulo-Monocytopoiesis. Cancer Cell. 2015;28;2:253-269. doi: 10.1016/j.ccell.2015.07.006.

17. Pillay J., Kamp V.M., van Hoffen E., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L. A Subset of Neutrophils in Human Systemic Inflammation Inhibits T Cell Responses Through MAC1. The Journal of Clinical Investigation. 2012;122;1:327-336. doi: 10.1172/JCI57990.

18. Brandau S., Dumitru C.A., Lang S. Protumor and Antitumor Functions of Neutrophil Granulocytes. Seminars in Immunopathology. 2013;35:163-176. doi: 10.1007/s00281-012-0344-6.

19. Fridlender Z.G., Sun J., Kim S. Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: N1 Versus N2 TAN. Cancer Cell. 2009;16;3:183-194. doi: 10.1016/j.ccr.2009.06.017.

20. Leliefeld P.H.C., Koenderman L., Pillay J. How Neutrophils Shape Adaptive Immune Responses. Frontiers in Immunology. 2015;6:471. doi: 10.3389/fimmu.2015.00471.

21. Batlle E., Massagué J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity. 2019;50;4:924-940. doi: 10.1016/j.immuni.2019.03.024.

22. Palano M.T., Gallazzi M., Cucchiara M., De Lerma Barbaro A., Gallo D., Bassani B., Bruno A., Mortara L. Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis.Vaccines. 2021;99;12:1488. doi: 10.3390/vaccines9121488.

23. Bonavita O., Massara M., Bonecchi R. Chemokine Regulation of Neutrophil Function in Tumors. Cytokine & Growth Factor Reviews. 2016;30:81-86. doi: 10.1016/j.cytogfr.2016.03.012.

24. Kitamura T., Fujishita T., Loetscher P., Revesz L., Hashida H., Kizaka-Kondoh S., Aoki M., Taketo M.M. Inactivation of Chemokine (C-C motif) Receptor 1 (CCR1) Suppresses Colon Cancer Liver Metastasis by Blocking Accumulation of Immature Myeloid Cells in a Mouse Model. The Proceedings of the National Academy of Sciences. 2010;107;29:13063-13068. doi: 10.1073/pnas.1002372107.

25. Yang L., Huang J., Ren X., Gorska A.E., Chytil A., Aakre M., Carbone D.P., Matrisian L.M., Richmond A., Lin P.C., Moses H.L. Abrogation of TGF Beta Signaling in Mammary Carcinomas Recruits Gr-1+CD11b+. Myeloid Cells that Promote Metastasis. Cancer Cell. 2008;13:23-35. doi: 10.1016/j.ccr.2007.12.004.

26. Masucci M.T., Minopoli M., Del Vecchio S., Carriero M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Frontiers in Immunology. 2020;11:1749. doi: 10.3389/fimmu.2020.01749.

27. Albrengues J., Shields M.A., Ng D., Park C.G., Ambrico A., Poindexter M.E., Upadhyay P., Uyeminami D.L., Pommier A., Küttner V., Bružas E., Maiorino L., Bautista C., Carmona E.M., Gimotty P.A., Fearon D.T., Chang K., Lyons S.K., Pinkerton K.E., Trotman L.C., Goldberg M.S., Yeh J.T., Egeblad M. Neutrophil Extracellular Traps Produced during Inflammation Awaken Dormant Cancer Cells in Mice. Science. 2018;361;6409:eaao4227. doi: 10.1126/science.aao4227.

28. Grayson P.C., Carmona-Rivera C., Xu L., Lim N., Gao Z., Asare A.L., Specks U., Stone J.H., Seo P., Spiera R.F., Langford C.A., Hoffman G.S., Kallenberg C.G., St Clair E.W., Tchao N.K., Ytterberg S.R., Phippard D.J., Merkel P.A., Kaplan M.J., Monach P.A. Neutrophil-Related Gene Expression and Low-Density Granulocytes Associated with Disease Activity and Response to Treatment in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatology. 2015;67:1922-1932. doi: 10.1002/art.39153.

29. Sagiv J.Y., Michaeli J., Assi S. Mishalian I., Kisos H., Levy L., Damti P., Lumbroso D., Polyansky L., Sionov R.V., Ariel A., Hovav A.H., Henke E., Fridlender Z.G., Granot Z. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Reports. 2015;10;4:562-573. doi: 10.1016/j.celrep.2014.12.039.

30. Mahiddine K., Blaisdell A., Ma S. Créquer-Grandhomme A., Lowell C.A., Erlebacher A. Relief of Tumor Hypoxia Unleashes the Tumoricidal Potential of Neutrophils. The Journal of Clinical Investigation. 2019;130;1:389-403. doi: 10.1172/JCI130952.

31. Campbell E.L. Hypoxia-Recruited Angiogenic Neutrophils. Blood. 2015;126;17: 1972-1973. doi: 10.1182/blood-2015-09-666578.

32. Powell D., Tauzin S., Hind L.E., Deng Q., Beebe D.J., Huttenlocher A. Chemokine Signaling and the Regulation of Bidirectional Leukocyte Migration in Interstitial Tissues. Cell Reports. 2017;19;8:1572-1585. doi: 10.1016/j.celrep.2017.04.078.

33. Vono M., Lin A., Norrby-Teglund A., Koup R.A., Liang F., Loré K. Neutrophils Acquire the Capacity for Antigen Presentation to Memory CD4(+) T Cells in vitro and ex vivo. Blood. 2017;129;14:1991-2001. doi: 10.1182/blood-2016-10-744441.

34. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M., Comerma L., Chorny A., Shan M., Xu W., Magri G., Knowles D.M., Tam W., Chiu A., Bussel J.B., Serrano S., Lorente J.A., Bellosillo B., Lloreta J., Juanpere N., Alameda F., Baró T., de Heredia C.D., Torán N., Català A., Torrebadell M., Fortuny C., Cusí V., Carreras C., Diaz G.A., Blander J.M., Farber C.M., Silvestri G., Cunningham-Rundles C., Calvillo M., Dufour C., Notarangelo L.D., Lougaris V., Plebani A., Casanova J.L., Ganal S.C., Diefenbach A., Aróstegui J.I., Juan M., Yagüe J., Mahlaoui N., Donadieu J., Chen K., Cerutti A. B Cell-Helper Neutrophils Stimulate the Diversification and Production of Immunoglobulin in the Marginal Zone of the Spleen. Nature Immunology. 2011;13:170-180. doi: 10.1038/ni.2194.

35. Metzemaekers M., Gouwy M., Proost P. Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords. Cellular & Molecular Immunology. 2020;17:433-450. doi: 10.1038/s41423-020-0412-0.

36. Fine N., Tasevski N., McCulloch C.A., Tenenbaum H.C., Glogauer M. The Neutrophil: Constant Defender and First Responder. Frontiers in Immunology. 2020;11:571085. doi: 10.3389/fimmu.2020.571085.

37. Evrard M., Kwok I.W.H., Chong S.Z., Teng K.W.W., Becht E., Chen J., Sieow J.L., Penny H.L., Ching G.C., Devi S., Adrover J.M., Li J.L.Y., Liong K.H., Tan L., Poon Z., Foo S., Chua J.W., Su I.H., Balabanian K., Bachelerie F., Biswas S.K., Larbi A., Hwang W.Y.K., Madan V., Koeffler H.P., Wong S.C., Newell E.W., Hidalgo A., Ginhoux F., Ng L.G. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, Effector Functions. Immunity. 2018;48;2:364-379.e8. doi: 10.1016/j.immuni.2018.02.002.

38. Zhu Y.P., Padgett L., Dinh H.Q., Marcovecchio P., Blatchley A., Wu R., Ehinger E., Kim C., Mikulski Z., Seumois G., Madrigal A., Vijayanand P., Hedrick C.C. Identification of an Early Unipotent Neutrophil Progenitor with Pro-Tumoral Activity in Mouse and Human Bone Marrow. Cell Reports. 2018;24;9:2329-2341. doi: 10.1016/j.celrep.2018.07.097.

39. Zhang D., Chen G., Manwani D., Mortha A., Xu C., Faith J.J., Burk R.D., Kunisaki Y., Jang J.E., Scheiermann C., Merad M., Frenette P.S. Neutrophil Ageing is Regulated by the Microbiome. Nature. 2015;525:528-532. doi: 10.1038/nature15367.

40. Szebeni G.J., Vizler C., Kitajka K., Puskas L.G. Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters. Mediators Inflammation. 2017:9294018. doi: 10.1155/2017/9294018.

41. Грачев А.Н., Самойлова Д.В., Рашидова М.А., Петренко А.А., Ковалева О.В. Макрофаги, ассоциированные с опухолью: современное состояние исследований и перспективы клинического использования // Успехи молекулярной онкологии. 2018. Т.5. №4. C. 20-28 [Grachev A.N., Samoylova D.V., Rashidova M.A., Petrenko A.A., Kovaleva O.V. Tumor-Associated Macrophages: Current State of Research and Prospects for Clinical Use. Uspekhi Molekulyarnoy Onkologii = Advances in Molecular Oncology. 2018;5;4:20-28 (In Russ.)]. doi: 10.17650/2313-805X-2018-5-4-20-28.

42. Becherini C., Lancia A., Detti B., Lucidi S., Scartoni D., Ingrosso G., Carnevale M.G., Roghi M., Bertini N., Orsatti C., Mangoni M., Francolini G., Marani S., Giacomelli I., Loi M., Pergolizzi S., Bonzano E., Aristei C., Livi L. Modulation of Tumor-Associated Macrophage Activity with Radiation Therapy: a Systematic Review. Strahlentherapie und Onkologie. 2023;199:1173-1190. doi: 10.1007/s00066-023-02097-3.

43. Kelly A., Gunaltay S., McEntee C.P., Shuttleworth E.E., Smedley C., Houston S.A., Fenton T.M., Levison S., Mann E.R., Travis M.A. Human Monocytes and Macrophages Regulate Immune Tolerance Via Integrin αvβ8-Mediated TGFβ Activation. Journal of Experimental Medicine. 2018;215;11:2725-2736. doi: 10.1084/jem.20171491.

44. Arwert E.N., Harney A.S., Entenberg D., Wang Y., Sahai E., Pollard J.W., Condeelis J.S. A Unidirectional Transition from Migratory to Perivascular Macrophage is Required for Tumor Cell Intravasation. Cell Reports. 2018;23:1239-1248. doi: 10.1016/j.celrep.2018.04.007.

45. Bron S., Henry L., Faes-Van’t Hull E., Turrini R., Vanhecke D., Guex N., Ifticene-Treboux A., Marina Iancu E., Semilietof A., Rufer N., Lehr H.A., Xenarios I., Coukos G., Delaloye J.F., Doucey M.A. TIE-2-Expressing Monocytes are Lymphangiogenic and Associate Specifically with Lymphatics of Human Breast Cancer. Oncoimmunology. 2016;5;2:e1073882. doi: 10.1080/2162402X.2015.1073882.

46. Guilliams M., van de Laar L. A Hitchhiker’s Guide to Myeloid Cell Subsets: Practical Implementation of a Novel Mononuclear Phagocyte Classification System. Frontiers in Immunology. 2015;6:406. doi: 10.3389/fimmu.2015.00406.

47. Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжышковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии // Бюллетень сибирской медицины. 2017. Т.16. №4. C. 61-74 [Cherdyntseva N.V., Mitrofanova I.V., Buldakov M.A., Stakheyeva M.N., Patysheva M.R., Zav’yalova M.V., Kzhyshkovskaya Yu.G. Macrophages and Tumor Progression: Towards Macrophage-Specific Therapy. Byulleten’ Sibirskoy Meditsiny = Bulletin of Siberian Medicine. 2017;16;4:61-74 (In Russ.)]. doi: 10.20538/1682-0363-2017-4-61-74.

48. Wynn T.A., Chawla A., Pollard J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature. 2013;496:445-455. doi: 10.1038/nature12034.

49. Sierra J.M., Secchiari F., Nunez S.Y., Iraolagoitia X.L.R., Ziblat A., Friedrich A.D., Regge M.V., Santilli M.C., Torres N.I., Gantov M., Trotta A., Ameri C., Vitagliano G., Pita H.R., Rico L., Rovegno A., Richards N., Domaica C.I., Zwirner N.W., Fuertes M.B. Tumor-Experienced Нuman NK Cells Express High Levels of PD-L1 and Inhibit CD8(+) T Cell Proliferation. Frontiers in Immunology. 2021;12:745939. doi: 10.3389/fimmu.2021.745939.

50. Stojanovic A., Cerwenka A. Natural Killer Cells and Solid Tumors. Journal of Innate Immunity. 2011;3;4:355-364. doi: 10.1159/000325465.

51. Habif G., Crinier A., Andre P., Vivier E., Narni-Mancinelli E. Targeting Natural Killer Cells in Solid Tumors. Cellular & Molecular Immunology. 2019;16:415-422. doi: 10.1038/s41423-019-0224-2.

52. Levi I., Amsalem H., Nissan A., Darash-Yahana M., Peretz T., Mandelboim O., Rachmilewitz J. Characterization of Tumor Infiltrating Natural Killer Cell Subset. Oncotarget. 2015;6:13835-13843. doi: 10.18632/oncotarget.3453.

53. Cózar B., Greppi M., Carpentier S., Narni-Mancinelli E., Chiossone L., Vivier E. Tumor-Infiltrating Natural Killer Cells. Cancer Discovery. 2021;11:34-44. doi: 10.1158/2159-8290.CD-20-0655.

54. Gallazzi M., Baci D., Mortara L., Bosi A., Buono G., Naselli A., Guarneri A., Dehò F., Capogrosso P., Albini A., Noonan D.M., Bruno A. Prostate Cancer Peripheral Blood NK Cells Show Enhanced CD9, CD49a, CXCR4, CXCL8, MMP-9 Production and Secrete Monocyte-Recruiting and Polarizing Factors. Frontiers in Immunology. 2020;11:586126. doi: 10.3389/fimmu.2020.586126.

55. Bruno A., Bassani B., D’Urso D.G., Pitaku I., Cassinotti E., Pelosi G., Boni L., Dominioni L., Noonan D.M., Mortara L., Albini A. Angiogenin and the MMP9-TIMP2 Axis are Up-Regulated in Proangiogenic, Decidual NK-Like Cells from Patients with Colorectal Cancer. Federation of American Societies for Experimental Biology Journal. 2018;32:5365-5377. doi: 10.1096/fj.201701103R.

56. Gotthardt D., Putz E.M., Grundschober E., Prchal-Murphy M., Straka E., Kudweis P., Heller G., Bago-Horvath Z., Witalisz-Siepracka A., Cumaraswamy A.A., Gunning P.T., Strobl B., Müller M., Moriggl R., Stockmann C., Sexl V. STAT5 is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discovery. 2016;6:414-429. doi: 10.1158/2159-8290.CD-15-0732.

57. Корнева Е.А. Пути взаимодействия нервной и иммунной систем: история и современность, клиническое применение // Медицинская иммунология. 2020. Т. 22. №3. С. 405-418 [Korneva Ye.A.  Pathways of Interaction between the Nervous and Immune Systems: History and Modernity, Clinical Application. Meditsinskaya Immunologiya = Medical Immunology. 2020;22;3:405-418 (In Russ.)]. doi: 10.15789/1563-0625-PON-1974.

58. Stakheyeva M., Eidenzon D., Slonimskaya E., Patysheva M., Bogdashin I., Kolegova E., Grigoriev E., Choinzonov E., Cherdyntseva N. Integral Characteristic of the Immune System State Predicts Breast Cancer Outcome. Experimental Oncology. 2019;41;1:32-38.

 

  PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Научно-исследовательская работа выполнена в рамках государственного задания ФМБА России по теме «Исследование функционального состояния клеток-эффекторов противоопухолевого иммунитета человека в период реализации канцерогенных эффектов хронического радиационного воздействия» (Соглашение о предоставлении субсидии из федерального бюджета на финансовое обеспечение выполнения государственного задания на оказание государственных услуг (выполнение работ) № 388-03-2025-085 от 24 января 2025 года).

Участие авторов. Все авторы подтверждают соответствие своего авторства международным критериям ICMJE. Кодинцева Е.А. – разработала концепцию статьи, подготовила первый вариант документа, прочитала и согласовала последний вариант рукописи. Аклеев А.А. – разработал концепцию статьи, выполнил научное редактирование, прочитал и утвердил последний вариант рукописи.

Поступила: 20.03.2025. Принята к публикации: 25.04.2025.