Медицинская радиология и радиационная безопасность, 2014. Том 59. № 3. С. 52-58

РАДИАЦИОННАЯ ФИЗИКА, ТЕХНИКА И ДОЗИМЕТРИЯ

В.Ю. Соловьев, Т.М. Хамидулин

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ВОКСЕЛ-ФАНТОМНОЙ ТЕХНОЛОГИИ ДЛЯ АВАРИЙНОЙ ДОЗИМЕТРИИ

Федеральный медицинский биофизический центр им. А.И.Бурназяна ФМБА России, Москва. E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

РЕФЕРАТ

Цель: Анализ возможности использования воксел-фантомной технологии расчетов в совокупности с комлектом аварийных дозиметров для целей аварийной дозиметрии в полях гамма-нейтронного излучения.

Материал и методы: Объектом исследования является распределение объемов жизненно важных органов по дозе (гистограммы «доза–объем») внутри воксельного фантома при облучении в поле гамма-нейтронного излучения источника со спектром излучения делящегося материала.

Результаты: Для типичного энергетического распределения поля сметанного гамма-нейтронного излучения делящегося материала в результате выполненных расчетов получено семейство распределений доз нейтронного и гамма-излучения внутри воксельного фантома при различной его ориентации по отношению к источнику излучения (лицом, спиной, правым и левым боком) и оценена величина дозы в точке расположения дозиметра (на поверхности груди фантома). Расчеты проведены в приближении точечного источника в условиях «большого реакторного зала» без учета ограничивающих стен и потолка для положения воксельного фантома на расстоянии 2,5 м от источника. По этим результатам расчетов оценены характеристики распределения массы основных жизненно важных органов по дозе. Показано, что наибольшее поражение красного костного мозга имеет место при ориентации спиной к источнику излучения, а наименьшее – при ориентации правым или левым боком при одинаковом удалении от источника. При расположении дозиметра на груди пострадавшего медиана распределения массы костного мозга по дозе в 5 раз меньше показаний дозиметра при ориентации фантома лицом к источнику и, наоборот значительно больше соответствующщих показаний дозиметра при ориентации спиной к источнику. При осуществлении практических расчетов необходимо учитывать все геометрические размеры реакторного зала включая элементы физической защиты.

Заключение: В результате выполненной работы разработана технология создания расчетно-экспериментального комплекса аварийной дозиметрии, состоящего из комплекта дозиметров нейтронного и гамма-излучения и расчетного модуля. Результирующая информация дает лечащим врачам полный объем данных о распределении дозы по телу и степени тяжести радиационного поражения жизненно важных органов пострадавшего, необходимый для принятия оптимального решения по стратегии и тактике лечения сразу после обработки показаний индивидуального дозиметра.

Ключевые слова: воксельный фантом, гамма-нейтронное излучение, доза облучения, красный костный мозг, аварийная дозиметрия

СПИСОК ЛИТЕРАТУРЫ

  1. Ильин Л.А., Соловьев В.Ю. Ближайшие медицинские последствия радиационных инцидентов на территории бывшего СССР. // Мед. радиол. и радиац. безопасность, 2004. Т. 49. № 6. C. 37–48.
  2. Соловьев В.Ю., Барабанова А.В., Бушманов А.Ю. и соавт. Анализ медицинских последствий радиационных инцидентов на территории бывшего СССР (по материалам регистра ГНЦ ФМБЦ им. А.И.Бурназяна ФМБА России). // Мед. радиол. и радиац. безопасность, 2013. Т. 58. № 1. С. 36–42.
  3. Баранов А.Е. Острая лучевая болезнь: биологическая дозиметрия, ранняя диагностика и лечение, исходы и отдаленные последствия / В кн.: Барабанова А.В., Баранов А.Е., Бушманов А.Ю., Гуськова А.К. Радиационные поражения человека. Избранные клинические лекции, методическое пособие. Под ред. А.Ю. Бушманова, В.Д. Ревы. – М., фирма «Слово», 2007. С. 53–84.
  4. Baranov A.E., Konchalovski M.V., Soloviev W.Ju., Guskova A.K. Use of blood cell count changes after radiation exposure in dose assessment and evaluation of bone marrow function. // In: The Medical Basis for Radiation Accident Preparedness II. Clinical Experience and Follow-up since 1979. Ed. R.C. Ricks, S.A. Fry, pp. 427–443.
  5. Gualdrin G., Ferrari P. A review of voxel model development and radiation protection applications at ENEA. // Radiat. Prot. Dosimetry, 2010, vol. 140, no. 4, pp. 383–390.
  6. Kinase S., Takagi S., Noguchi H., Saito K. Application of voxel phantoms and Monte Carlo method to whole-body counter calibration. // Radiat. Prot. Dosimetry, 2007, vol. 125, no. 1–4, pp. 189–93.
  7. Соловьев В.Ю., Баранов А.Е., Хамидулин Т.М. База данных по острым лучевым поражениям человека. Сообщение 2. Прогнозирование пострадиационной динамики концентрации нейтрофилов периферической крови для неравномерного по телу аварийного облучения человека с помощью воксел-фантомной технологии. // Мед. радиол. и радиац. безопасность, 2011. Т. 56. № 4. С. 24–31.
  8. Хамидулин Т.М., Соловьев В.Ю. Оценка распределения дозы по телу пострадавшего при аварийном облучении с помощью воксел-фантомной технологии. // Medline.ru: российский биомедицинский электронный журнал, 2011. Т. 12. Ст. 40. С. 474–482. http://www.medline.ru/public/art/tom12/arthtml
  9. ICRP Publication 110: Adult Reference Computational Phantoms. // Ann. ICRP, 2009, 137 p.
  10. Ишханов Б.С., Кэбин Э.И. Деление ядер. Web-публикация (версия 05.06.12). http://nuclphys.sinp.msu.ru/fission/index.html#с
  11. Brown et al. MCNP – A General Monte Carlo N-Particle Transport Code, Version 5 Volume II: User’s Guide. Los Alamos National Laboratory, Distributed by the RSICC of the Oak Ridge National Laboratory, 2003.
  12. Соловьев В.Ю., Баранов А.Е., Хамидулин Т.М., Зиновьева Н.В. База данных по острым лучевым поражениям человека. Сообщение 3. Особенности прогнозирования пострадиационной динамики концентрации нейтрофилов в периферической крови при костномозговом синдроме, отягощенном лучевыми ожогами, а также при неравномерном облучении. // Мед. радиол. и радиац. безопасность, 2013. Т. 58. № 6. С. 30–35.