Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 6. P. 34-41


N.K. Voznesensky1, N.V. Bogdanov1, S.L. Dorohovich2, Yu.G. Zabaryansky3, Yu.A. Kurachenko3, Eu.S. Matusevich1, V.A. Levchenko2, Yu.S. Mardynsky4, N.N. Voznesenskaya5

The Modeling of Temperat ure Fields in Vertebra Bone at Stabilizing Vertebroplasty*

* This article in Russian is published in the journal «Medical Radiology and Radiation Safety». 2015. Vol. 60. No. 4. P. 62-70.

1. Institute of Nuclear Power Engineering in National Research Nuclear University MEPhI, Obninsk, Russia; 2. Experimental research and methodological center “Simulation Systems Ltd”, Obninsk, Russia; 3. A.I. Leypunsky Institute for Physics and Power Engineering named after, Obninsk, Russia, e-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. ; 4. A.F. Tsyb, Medical Radiological Research Centre, Obninsk, Russia; 5. City Clinical Hospital of FMBA, Obninsk, Russia


Purpose: To study the temperature fields caused by bone cement polymerization at the stabilizing vertebroplasty. To verify experimental data by thermohydraulic simulation. To modify program codes, applied in nuclear installations in order to adapt them to new object region.

Material and methods: Two groups of experiments involving the non-stationary temperature distribution measurements were done, namely, the cement polymerization: a) in the isolated cuvette; b) in a vertebra. For numerical modeling of experiments, the 3D nonstationary KANAL code applied in thermohydraulics of nuclear power plants is adapted.

Results: The satisfactory coherence of measured data and simulated ones is obtained for temperature distributions, the spatial and time-dependent as well. The most important is the closeness in experimental and simulating temperature maximum values at cement polymerization in a vertebra. The executed study grants the theoretical support of vertebroplasty in two aspects: a) by providing with the developed calculation techniques; b) by estimating the curative effect because of the bone tissue heating.

Key words: spinal metastases, vertebroplasty, temperature fields, experimental and simulating modeling, numerical simulation, curative effect


  1. Galibert P., Deramond H., Rosat P., Le Gars D. Note préliminaire sur le traitement des angiomes vertébraux par vertébroplastie acrylique percutanée. Neuro chirurgie. 1987. Vol. 33. P. 166-168.
  2. Deramond H., Depriester C., Galibert P., Le Gars D. Percutaneous vertebroplasty with polymethyl methacrylate. Technique, indicatios, and results. Radiol. Clin. North Amer. 1998. Vol. 36. P. 533-546.
  3. Kaemmerlen P., Thiesse P., Jonas P. et al. Percutaneous injection of orthopaedic cement in metastatic vertebral lesions. N. Engl. J. Med. 1989. Vol. 321. No. 2. P. 121-132.
  4. Aliev M., Dolgushin B., Teplyakov V., Valiev A. Transcutaneous vertebroplasty in combined treatment of patients with tumoral lesions of the spine. EMSOS. 2003. abs A-044. 72 p.
  5. Aliev M., Teplyakov V., Karpenko V., Valiev A. Vertebroplasty as a choice of treatment of painful syndrome in patients with tumoral lesions of the spine. EMSOS. 2004. abs 28. 5 p.
  6. Cortet ., Cotton B., Boutry N. et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev. Rheum. Ed. 1997. Vol. 64. No. 3. P. 177-183.
  7. Valiev M.A., Musaev E.R., Teplyakov V.V. et al. Chreskozhnaya vertebroplastika v onkologii. In M.D. Alieva, B.I. Dolgushina (eds.). Moscow: INFRA-M. 2010. 71 p. (In Russ.).
  8. Aliev M.D., Sokolovskii V.A. Vysokotekhnologichnoe lechenie v onkoortopedii. Moscow. 2008. 24 p. (In Russ.).
  9. Ptashnikov D.A., Usikov V.D., Korytova L.I. et al. Pathological fractures of spine caused by tumor: diagnostics and treatment tactic. In: “First International Scientific Distance Congress on Spine and Spinal Cord Surgery “InterSpine - 2004”. Saint-Petersburg, Russia, September. 2004. P. 36-38. (In Russ.).
  10. Kustov A.V., Zharinov G.M., Rud' S.D. et al. Izuchenie effektivnosti punktsionnoi vertebroplastiki i luchevoi terapii v lechenii agressivnykh gemangiom pozvonochnika. Med. akad. zhurnal. 2008. No. 4. P. 101-114. (In Russ.).
  11. Dzhindzhikhadze R.S., Lazarev V.A., Gorozhanin A.V. et al. Perkutannaya vertebroplastika. Neirokhirurgiya. 2005. No. 1. P. 36-41. (In Russ.).
  12. Diamond T.H., Champion B., Clark W.A. Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. Amer. J. Med. 2003. Vol. 114. No. 4. P. 257-265.
  13. Perez-Higueras A., Alvarez L., Rossi R.E. et al. Percutaneous vertebroplasty: long term clinical and radiological outcome. Neuroradiology. 2002. Vol. 44. No. 11. P. 950-954.
  14. Martin J.B., Wetzel S.G., Seium Y. et al. Percutaneous vertebroplasty in metastatic disease: transpedicular access and treatment of lysed pedicles-initial experience. Radiology. 2003. Vol. 229. No. 2. P. 593-597.
  15. Stricker K., Orler R., Yen K. et al. Severe hypercapnia due to pulmonary embolism of polymethyl methacrylate during vertebroplasty. Anesth. 2004. Vol. 98. No. 4. P. 1184-1186.
  16. Choe Du H., Marom E.M., Ahrar K. et al. Pulmonary embolism of polymethyl methacrylate during percutaneous vertebroplasty and kyphoplasty. AJR Amer. J. Roentgenol. 2004. Vol. 183. No. 4. P. 1097-1102.
  17. Yoo K.Y., Jeong S.W., Yoon W., Lee J. Acute respiratory distress syndrome associated with pulmonary cement embolism following percutaneous vertebroplasty with polymethyl methacrylate. Spine. 2004. Vol. 29. No. 14. P. 294-297.
  18. Nussbaum D.A., Gailloud P., Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site. J. Vasc. Interv. Radiol. 2004. Vol. 15. No. 11. P. 1185-1192.
  19. Cortet ., Cotton B., Boutry N. et al. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev. Rheum. Ed. 1997. Vol. 64. No. 3. P. 177-183.
  20. Manukovskii V.A. Vertebroplastika v lechenii patologii pozvonochnika (kliniko-eksperimental'noe issledovanie). Saint Petersburg: Avtoreferat diss. dokt. med. nauk. 2009. 45 p.
  21. Tomita K., Kawahara N., Kobayashi T. et al. Surgical strategy for spinal metastases. Spine. 2001. Vol. 26. No. 3. P. 298-330.
  22. Kanenko S., Sehgal V., Skinner H.B. et al. Radioactive bone cement for the treatment of spinal metastases: a dosimetric analysis of simulated clinical scenarious. Phys. Med. Biol. 2012. Vol. 57. P. 4387-4401.
  23. San Millan R.D., Burkhardt K., Jean B. et al. Pathology findings with acrylic implants.Bone. 1999. Vol. 25. No. 2. P. 85-90.
  24. Wetzel S.G., Martin J.B., Somon T. et al. Painful osteolytic metastasis of the atlas: treatment with percutaneous vertebroplasty. Spine. 2002. Vol. 27. No. 22. P. 493-495.
  25. Deramond H., Wright N.T., Belkoff S.M. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 1999. Vol. 25. No. 2. P. 17-21.
  26. Belkoff S.M., Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine. 2003. Vol. 28. No. 14. P. 1555-1559.
  27. Verlaan J.J., Oner F.C., Verbout A.J. et al. Temperature elevation after vertebroplasty with polymethylmethacrylate in the goat spine. J. Biomed. Mater. Res. B: Appl. Biomater. 2003. Vol. 67. No. 1. P. 581-585.
  28. Anselmetti G., Manca A., Kanika Kh. et al. Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: An in vivo study in humans. Cardiovasc. Radiol. 2009. Vol. 32. P. 491-498.
  29. Fradkin S.Z. Sovremennoe sostoyanie gipertermicheskoi onkologii i tendentsii ee razvitiya. Med. novosti. 2004. No. 3. P. 3-8.
  30. Li C., Chien S., Branemark P.I. Heat shock-induced necrosis and apoptosis in osteoblasts. J. Orthop. Res. 1999. Vol. 17. No. 6. P. 891-899.
  31. Eriksson R.A., Albrektsson T., Magnusson B. Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand. Plast. Reconstr. Surg. 1984. Vol. 18. No. 3. P. 261-268.
  32. Aleksandrov N.N., Savchenko N.E., Fradkin S.Z. et al. Primenenie gipertermii i giperglikemii pri lechenii zlokachestvennykh opukholei. Moscow: Meditsina. 1980. 256 p.
  33. Li S., Kotha S., Huang C.H. et al. Finite element thermal analysis of bone cement for joint replacements. J. Biomech. 2003. Vol. 125. No. 3. P. 315-322.
  34. Po-Liang Lai, Ching-Lung Tai, Lih-Huei Chen et al. Cement leakage causes potential thermal injury in vertebroplasty. Available from:
  35. Modul' ATsP/TsAP ZET 210. Available from: (In Russ.).
  36. CementoFixx-R Hauptmerkmale Opti Med. Global Care. Instructions for use surgical cement for vertebroplasty sterile, radiopaque. 2004. 120 p. Available from:
  37. Teplogidravlicheskii kod. Opisanie chislennoi skhemy koda KANAL. Otchet o NIR. Vol. 7. Obninsk: ENIMTs MS. 2008. 95 p. (In Russ.).
  38. Voznesenskii N.K., Bogdanov N.V., Dorokhovich S.L. et al. Modelirovanie gipertermii pri stabiliziruyushchei vertebroplastike. Yadernaya energetika. 2013. No. 1. P. 37-48. (In Russ.).
  39. Overgaard J. The current and potential role of hyperthermia in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1989. Vol. 16. P. 535-549.

For citation: Voznesensky NK, Bogdanov NV, Dorohovich SL, Zabaryansky YuG, Kurachenko YuA, Matusevich EuS, Levchenko VA, Mardynsky YuS, Voznesenskaya NN. The Modeling of Temperature Fields in Vertebra Bone at Stabilizing Vertebroplasty. Medical Radiology and Radiation Safety. 2015;60(6):34-41.

PDF (ENG) Full-text article