JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 1. P. 5–12

V.A. Brunchukov, T.A. Astrelina, V.A. Nikitina, I.V. Kobzeva, Yu.B. Suchkova, D.Yu. Usupzhanova, A.A. Rastorgueva, T.V. Karaseva, T.V. Gordeev, O.A. Maxsimova, L.A. Naumova, S.V. Lischuk, E.A. Dubova, K.A. Pavlov, V.A. Brumberg, A.E. Makhova, E.E. Lomonosova, E.I. Dobrovolsskaya, I.M. Barabash, A.Yu. Bushmanov, A.S. Samoilov

Experimental Treatment of Radiation Skin Lesions with Mesenchymal Stem Cells and Their Conditioned Media

A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Purpose: To study the regeneration processes in the treatment of radiation skin lesions with the mesenchymal stem cells (MSC) derived from human gingiva and their conditional medium concentrate (CCM) during animal studies.

Material and methods: The study includes 80 white male Wistar rats weighing 210 ± 30 g at the age of 8–12 weeks, randomized into 4 groups (20 animals in each): control group (C), animal did not receive treatment; control with the introduction of the conditional medium concentrate (CCM) three times on days 1, 14 and 21; the introduction of MSC in a dose of 2 million cells per 1 kg three times on days 1, 14 and 21; the introduction of CCM in the estimated dose of 2 million cells per 1 kg three times on days 1, 14 and 21. Radiation burn simulation was performed (using on an X-ray unit at a dose of 110 Gy) and each animal was observed 17 times: at days 1, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105 and 112. Histological (stained with hematoxylin-eosin) and immunohistochemical (CD31, CD68, and VEGF) studies were performed. MSC was cultivated according to the standard procedure up to passages 3–5, the conditioned medium was collected and concentrated 10 times. The MSC immunophenotype (CD34, CD45, CD90, CD105, CD73, HLA-DR) and viability (7-ADD) were determined using flow cytometry.

Results: Under the assessment of the animal skin on the day 7 in the CCM group, the area was significantly larger compared to the C, MSC, CM groups (р ≤ 0.05). In the CM group on the day 14 the area of the open wound surface and ulcers from day 28 to day 42 was significantly less, compared with the C, MSC and CCM groups (р ≤ 0.05). In group C, from 42 to 77 days of observation, an increase in the area of skin ulcers was observed compared with the CM and CCM groups (р ≤ 0.05). On the day 112, healing of skin ulcers in the CM group was observed in 40 %, in the MSC group in 60 %, and only in 20 % of animals in the CCM group, and in the C group it was not registered. Expression of VEGF marker on endothelial cells and stromal cells was observed in groups C and CM on day 28 and in groups MSCs and CCM on day 112. On the 28th day in the MSC group, the average number of vessels (CD31) in the field of view was 6.0, and on day 112 it was 12.75, р ≤ 0.05, in the CCM group – 19.10 and 28.6, respectively, р ≤ 0.05. An increase in the number of macrophages (CD68) was found in group C from 28 to 112 days (11.6 and 24.73, р ≤ 0.05), and in the CM group the decrease was 22.1 and 13.07, respectively, р ≤ 0.05.

Conclusion: Thus, all used treatment modes of radiation skin lesions, including 3-fold administration of CM, MSC and CCM at a dose of 2 million cells per 1 kg, were effective and resulted in a reduction in the damage area, accelerated ulcer healing, and improvement of the regenerative processes. In addition, the use of MSCs led to the improvement of inflammatory processes’ vascularization and reduction in the radiation skin lesions.

Key words: mesenchymal stem cells, radiation skin lesions, conditioned medium, cellular technologies, X-rays, skin

For citation: Brunchukov VA, Astrelina TA, Nikitina VA, Kobzeva IV, Suchkova YuB, Usupzhanova DYu, Rastorgueva AA, Karaseva TV, Gordeev TV, Maxsimova OA, Naumova LA, Lischuk SV, Dubova EA, Pavlov KA, Brumberg VA, Makhova AE, Lomonosova EE, Dobrovolsskaya EI, Barabash IM, Bushmanov AYu, Samoilov AS. Experimental Treatment of Radiation Skin Lesions with Mesenchymal Stem Cells and Their Conditioned Media. Medical Radiology and Radiation Safety. 2020;65(1):5-0. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-1-5-12

Список литературы / References

  1. Радиационная медицина. Руководство для врачей-исследователей и организаторов здравоохранения. Под ред. Л.А. Ильина. М.: ИздАТ. 2001;(2):432 [Radiation Medicine. A Guide for Medical Researchers and Health Care Organizers. Ed. LA Ilyin. Moscow: Izdat. 2001;(2):432 (In Russ.)].
  2. Howpel JW, Coggle JE, Wells J, et al. The acute effects of different energy beta-emiters on pig and mouse skin. Drit J Radiobiology. 1968; (190):47-51.
  3. Осанов ДП. Дозиметрия и радиационная биофизика кожи. М.: Энергоатомиздат. 1983. 152 с. [Osanov DP. Dosimetry and Radiation Biophysics of the Skin. M.: Energoatomizdat. 1983:152 (In Russ.)].
  4. Zheng K, Wu W, Jang S, et al. Bone marrow mesenchymal stem cell implantation for the treatment of radioactivity‑induced acute skin damage in rats. Molecular Medicine Reports. 2015;12:7065-71.
  5. Мороз ББ, Онищенко НА, Лебедев ВГ, и др. Влияние мультипотентных мезенхимальных стромальных клеток костного мозга на течение местных лучевых поражений у крыс после локального β-облучения. Радиац. биол. Радиоэкология. 2009;49(6):688-93. [Moroz BB, Onishchenko NA, Lebedev VG, et al. Influence of multipotent mesenchymal bone marrow stromal cells on local radiation injury in rats after local β-irradiation. Radiation Biology. Radioecology. 2009;49(6):688-93 (In Russ.)].
  6. Котенко КВ, Еремин ИИ, Мороз ББ, и др. Клеточные технологии в лечении радиационных ожогов: опыт ФМБЦ им. А.И. Бурназяна. Клеточная трансплантология и тканевая инженерия. 2012;7(2):97-102. [Kotenko KV, Eremin LI, Moroz BB, et al. Cell technologies in the treatment of radiation burns: experience of the Burnasyan Federal Medical Biophysical Centre. Cell Transplantation and Tissue Engineering. 2012;7(2):97-102 (In Russ.)].
  7. Темнов АА, Астрелина ТА, Рогов КА, и др. Исследование влияния факторов кондиционированной среды, полученной при культивировании мезенхимальных стволовых клеток костного мозга, на течение тяжелых местных лучевых поражений кожи у крыс. Медицинская радиология и радиационная безопасность. 2018;63(1):35-9. [Temnov AA, Astrelina TA, Rogov КА, et al. Investigation of the influence of the conditioning medium factors obtained during the cultivation of bone marrow mesenchymal stem cells on the course of severe local radiation injuries of skin in rats. Medical Radiology and Radiation Safety. 2018;63(1):35-9. (In Russ.)].
  8. Kim HS, Choi DY, Yun SJ, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res. 2012;11(2):839-49.
  9. Daltro PS, Barreto BC, Silva PG, et al. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model. The International Society for Cellular Therapy Position Statement Cytotherapy. 2017;19:1176-88.
  10. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cells signaling and therapy. Circ Res. 2008;103:1204-19.
  11. Lee C, Shim S, Jang H, et al. Human umbilical cord blood derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. The International Society for Cellular Therapy Position Statement Cytotherapy. 2017;19(9):1048-59.
  12. Öksüz S, Şahin Alagöz M, Karagöz H, et al. Comparison of treatments with local mesenchymal stem cells and mesenchymal stem cells with increased vascular endothelial growth factor fxpression on irradiation injury of expanded skin. Ann Plast Surg. 2015;75:219-30.
  13. Mitrano TI, Grob MS, Carrión F, et al. Culture and Characterization of Mesenchymal Stem Cells From Human Gingival Tissue. Journal of Periodontology. 2010;81:917-25.
  14. Zhang QZ, Nguyen AL, Yu WH, Le AD. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res. 2012;91(11):1011-8.
  15. Duan HG, Ji F, Zheng CQ, et al. Conditioned medium from umbilical cord mesenchymal stem cells improves nasal mucosa damage by radiation. Biotechnol Lett. 2018;40(6):999-1007.
  16. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy. 2006;8:315-7.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study was financially supported by the Federal Target Program “Ensuring Nuclear and Radiation Safety for 2016–2020. and for the period until 2030”. A series of publications is planned based on the results of the studies.

Contribution: Article was prepared with equal participation of the authors.

Compliance with the rules of bioethics. The study was performed in accordance with the ethical standards for the treatment of animals adopted by the European Convention for the protection of vertebrates used for research and other scientific purposes.

Article received: 12.10.2018. Accepted for publication: 11.12.2019

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2772713
Today
Yesterday
This week
Last week
This month
Last month
For all time
2440
3219
5659
25438
80456
75709
2772713

Forecast today
9144


Your IP:216.73.216.112