JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 44–49

K.Yu. Slashchuk, P.O. Rumyantsev, M.V. Degtyarev, S.S. Serzhenko, O.D. Baranova, A.A. Trukhin, Ya.I. Sirota

Molecular Imaging of Neuroendocrine Tumors by Somatostatin-Receptor Scintigraphy (SPECT/CT) with 99mTc-Tektrotyd

National Medical Research Centre of Endocrinology, Moscow, Russia

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms constituting about 0.5 % of all cancer cases. In recent years, there has been a significant increase in the incidence of NETs, which is primarily due to the active development and improvement of medical imaging technologies. Successful treatment and prognosis for patients with NETs strongly depend on the stage of the disease. One of the effective methods of visualization and staging NETs in nuclear medicine is somatostin receptor scintigraphy (SRS), which is based on the use of partial somatostatin receptor agonists labeled with radioactive isotopes. The article presents an analysis of 55 patients with NETs of various localizations who underwent scintigraphy and SPECT/CT. Radiopharmaceutical was used as a tracer for SRS. It was prepared on the basis of a lyophilisate developed by Polatom (Poland) — Tektrotyd, labeled with 99mTc. According to the results of the study SRS with 99mTc-Tektrotyd is informative in the topical diagnosis of NETs, especially when PET/CT scan with 68Ga-labeled peptides is not available. Sensitivity varies depending on the NET localization. It is necessary to continue researches on the diagnostic value of SRS with 99mTc-Tektrotyd for tumors, in the pathogenesis of which somatostatin receptors play a significant role.

Key words: somatostatin-receptor scintigraphy, SPECT/CT, tektrotyd, octreoscan, neuroendocrine tumors

For citation: Slashchuk KYu, Rumyantsev PO, Degtyarev MV, Serzhenko SS, Baranova OD, Trukhin AA, Sirota YaI. Molecular Imaging of Neuroendocrine Tumors by Somatostatin-Receptor Scintigraphy (SPECT/CT) with 99mTc-Tektrotyd. Medical Radiology and Radiation Safety. 2020;65(2):44-9. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-44-49

References

  1. Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology. 2004;80 Suppl 1:3-7. DOI: 10.1159/000080731.
  2. Yao JC, Hassan M, Phan A, et al. One hundred years after «carcinoid»: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063-72. DOI: 10.1200/JCO.2007.15.4377.
  3. Williams E. The Classification of Carcinoid Tumours. Lancet. 1963;281(7275):238-9. DOI: 10.1016/s0140-6736(63)90951-6.
  4. Rindi G, Arnold R, Bosman FT, et al. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Hruban RH, et al, editors. WHO classification of tumors of the digestive system. Lyon: IARC; 2010. p. S13-S14.
  5. Tang LH, Basturk O, Sue JJ, Klimstra DS. A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. Am J Surg Pathol. 2016;40(9):1192-202. DOI: 10.1097/PAS.0000000000000662.
  6. Баранова ОД, Румянцев ПО, Слащук КЮ, Петров ЛО. Радионуклидная визуализация и терапия у пациентов с нейроэндокринными опухолями. Эндокринная хирургия. 2017;11(4):178-90. DOI: 10.14341/serg9572 [Baranova OD, Roumiantsev PO, Slashchuk KY, Petrov LO. Radionuclide imaging and therapy in patients with neuroendocrine tumors. Endocrine Surgery. 2017;11(4):178-90. (in Russ.)].
  7. Kunikowska J, Lewington V, Krolicki L. Optimizing Somatostatin Receptor Imaging in Patients with Neuroendocrine Tumors: The Impact of 99mTc-HYNICTOC SPECT/SPECT/CT Versus 68Ga-DOTATATE PET/CT Upon Clinical Management. Clin Nucl Med. 2017;42(12):905-11. DOI: 10.1097/RLU.0000000000001877.
  8. Czepczyński R, Parisella MG, Kosowicz J, Mikołajczak R, Ziemnicka K, Gryczyńska M, Signore A. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur J Nucl Med and Mol Imaging. 2007;34(10):1635-45. DOI: 10.1007/s00259-007-0479-1.
  9. Sergieva S, Robev B, Dimcheva M, Fakirova A, Hristoskova R. Clinical application of SPECT-CT with 99mTc-Tektrotyd in bronchial and thymic neuroendocrine tumors (NETs). Nucl Med Review. 2016;19(2):81-7. DOI: 10.5603/NMR.2016.0017.
  10. Artiko V, Afgan A, Petrovič J, Radovič B, Petrovič N, Vlajković M, Obradović V. Evaluation of neuroendocrine tumors with 99mTc-EDDA/HYNIC TOC. Nucl Med Review. 2016;19(2):99-103. DOI: 10.5603/NMR.2016.0020.
  11. Garai I, Barna S, Nagy G, & Forgács A. Limitations and pitfalls of 99mTc-EDDA/ /HYNIC-TOC (Tektrotyd) scintigraphy. Nucl Med  Review. 2016;19(2):93-8. DOI: 10.5603/NMR.2016.0019.
  12. Al-Chalabi H, Cook A, Ellis C, Patel CN, Scarsbrook AF. Feasibility of a streamlined imaging protocol in technetium-99m-Tektrotyd somatostatin receptor SPECT/CT. Clinical Radiology. 2018;73(6):527-34. DOI: 10.1016/j.crad.2017.12.019.
  13. Briganti V, Cuccurullo V, Di Stasio GD, Mansi, L. (2019). Gamma emitters in pancreatic endocrine tumors imaging in the PET era: is there a clinical space for 99mTc-peptides? Current Radiopharmaceuticals. DOI: 10.2174/1874471012666190301122524.
  14. Boutsikou E, Porpodis K, Chatzipavlidou V, Hardavella G, Gerasimou G, Domvri K, Zarogoulidis K. Predictive Value of 99mTC-hynic-toc Scintigraphy in Lung Neuroendocrine Tumor Diagnosis. Technology in Cancer Research & Treatment, 2019;18:1-18. DOI: 10.1177/1533033819842586.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Informed consent. All patients signed an informed consent to participate in the study.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 18.12.2019.

Accepted for publication: 12.03.2020.

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2770594
Today
Yesterday
This week
Last week
This month
Last month
For all time
3212
2948
25438
25438
78337
75709
2770594

Forecast today
3384


Your IP:216.73.216.213