JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 57–61
V.V. Fedorov, V.I. Potetnya, A.S. Moiseev, A.E. Chernukha, S.E. Ulyanenko, A.N. Solovev
Mathematical Simulation of the Doses inside Patient Body under Prostate Irradiation with Carbon Ion Beam
A. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center of the
Ministry of Health of the Russian Federation, Obninsk, Kaluga region
E-mail:
This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
Purpose: The radiotherapy methods using heavy charged particles become popular nowadays due to its high efficiency in treatment of oncological patients. On the other side, the practical application of such particles is deeply connected to the influence of secondary radiation, which is a result of nuclear collisions, that can affect the patients’ tissues and organs outside the treatment field. Doses in the out-of-field volumes should be considered from the standpoint of radiological protection. In this study we perform mathematical simulations of the absorbed dose in various organs under the prostate irradiation with carbon ion beam and compared these dose values with existing reference values from CT procedures, and known radiological protection recommendations against current practice of clinical use of carbon ions.
Material and methods: The simulation tool is general application Monte-Carlo code FLUKA widely used for ionizing radiation transport modeling and simulations in radiological protection field. The patient model is one of the most detailed voxelized anthropomorphic phantom Vishum. During the simulation the absorbed dose of segmented organs has been assessed under the spread-out Bragg peak of carbon ions uniformly covering the prostate with the physical dose. The resulted dose in organs is normalized to the prostate dose. This is the qualitative assessment of radiation treatment procedure which allowed us to analyze the out-of-field doses in distant organs from the viewpoint of radiological protection in ion beam therapy, following existing ICRP Publication 127 guidelines.
Results: The results show that the levels of dose due to prostate irradiation in the regimes widely used in the world practice are two level of magnitude lower than dose levels under the full body CT examination, and are comparable to the aircraft crew doses.
Conclusion: Thus, the obtained results might be interested from the risks assessment point of view, including the secondary radiation-induced cancers or other observable or expected treatment effects.
Key words: Monte-Carlo simulation, ion beam therapy, dose distribution, anthropomorphic phantom, voxel phantom, prostate, secondary radiation, spread-out Bragg peak
For citation: Fedorov VV, Potetnya VI, Moiseev AS, Chernukha AE, Ulyanenko SE, Solovev AN. Mathematical Simulation of the Doses inside Patient Body under Prostate Irradiation with Carbon Ion Beam. Medical Radiology and Radiation Safety. 2020;65(2):57-61. (In Russ.).
DOI: 10.12737/1024-6177-2020-65-2-57-61
References
1. Каприн АД, Ульяненко СЕ. Адронная терапия — точки развития. Медицина: целевые проекты. 2016;23:56-59. [Kaprin AD, Ulyanenko SE. Hadron therapy — development points. Medicine: Target Projects. 2016;23:56-59. (in Russ.)].
2. Соловьев АН, Гулидов ИА, Мардынский ЮС, Ульяненко СЕ и др. Современные тенденции в мире частиц. Краткие итоги конференции PTCOG56. Радиационная биология. Радиоэкология. 2017;57(5):548-50. [Soloviev AN, Gulidov IA, Mardynsky YuS, Ulyanenko SE, Galkin VN, Kaprin AD. Modern Trends in the World of Particles. Summary results of the PTCOG56 Conference. Radiation Biology. Radioecology. 2017;57(5):548-50. (in Russ.)].
3. Durante M, Paganetti H. Nuclear physics in particle therapy: a review. Reports on Progress in Physics. 2016;79:096702 DOI: 10.1088/0034-4885/79/9/096702.
4. Grassberger C, Paganetti H. Elevated LET components in clinical proton beams. Phys Med Biol. 2011;56:6677-91. DOI: 10.1088/0031-9155/56/20/011.
5. Ульяненко СЕ, Лычагин АА, Корякин СН, Чернуха АЕ, и др. Распределение дозы и ЛПЭ в биообъектах при облучении протонами. Медицинская физика. 2018;1(77):68-74. [Ulyanenko SE, Lychagin AA, Koryakin SN, Chernukha AE, Troshina MV, Goulidov IN, et al. Simulation of dose and LET distributions within biological objects in proton fields. Medical Physics. 2018;1(77):68-74. (in Russ.)].
6. Polf JC, Newhauser WD, Titt U. Patient neutron dose equivalent exposures outside of the proton therapy treatment field. Radiat Protect Dosimetry. 2005;115:154-8.
7. Zacharatou J, Lee C, Bolch C, Xu W, Paganetti H. Assessment of organ specific neutron doses in proton therapy using whole-body age-dependent voxel phantoms. Phys Med Biol. 2008;53:693-714. DOI: 10.1088/0031-9155/53/3/012.
8. Корякина ЕВ, Потетня ВИ. Цитогенетические эффекты низких доз нейтронов в клетках млекопитающих. Альманах клинической медицины. 2015;41:72-8. [Koryakina EV, Potetnya VI. Cytogenetic effects of low neutron doses in mammalian cells. Almanac of Clinical Medicine. 2015;41:72-8. (in Russ.)].
9. Gunzert-Marx K, Iwase H, Schardt D, Simon RS. Secondary beam fragments produced by 200 MeV 12C ions in water and their dose contributions in carbon ion radiotherapy. New J Phys. 2008;10:075003. DOI: 10.1088/1367-2630/10/7/075003.
10. Iwase H, Gunzert-Marx K, Haettner E, Schardt D, Gutermuth F, Kraemer M, et al. Experimental and theoretical study of the neutron dose produced by carbon ion therapy beams. Radiat Protect Dosimetry. 2007;126(1-4):615-8.
11. Hultqvist M, Gudowska I. Secondary doses delivered to an anthropomorphic male phantom under prostate irradiation with proton and carbon ion beams Radiat Measurements. 2010;45:1410-3. DOI: 10.1016/j.radmeas.2010.05.020.
12. Hultqvist M, Gudowska I. Secondary absorbed doses from light ion irradiation in anthropomorphic phantoms representing an adult male and a 10 year old child. Phys Med Biol. 2010;55:6633-53. DOI: 10.1088/0031-9155/55/22/004.
13. Xu XG, Bednarz B, Paganetti H. A review of dosimetry studies on external beam radiation treatment with respect to second cancer induction. Phys Med Biol. 2008;53(13):193-241. DOI: 10.1088/0031-9155/53/13/R01.
14. ICRP. Radiological Protection in Ion Beam Radiotherapy. ICRP Publication 127. Annals of the ICRP. 2014;43(4)
15. Zankl M, Fill U, Petoussi-Henss N, Regulla D. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys Med Biol. 2002;47:2367-85.
16. Ballarini F, Battistoni G, Campanella M, Carboni M, Cerutti F, Empl A, et al. The FLUKA code: an overview. J Phys: Conference Series. 2006;41:151-60.
17. Schlattl H, Zankl M, Becker J, Hoeschen C. Dose conversion coefficients for CT examinations of adults with automatic tube current modulation. Phys Med Biol. 2010;55(20):6243-61. DOI: 10.1088/0031-9155/55/20/013.
18. ICRU. Reference Data for the Validation of Doses from Cosmic-Radiation Exposure of Aircraft Crew. ICRU Report 84 (prepared jointly with ICRP). ICRU. 2010;10(2).
19. Osama M, Sishc BJ, Saha J, Pompos A, Rahimi A, Story M, et al. Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers. 2017;9(66) DOI: 10.3390/cancers9060066.
20. Антипов ЮМ, Бритвич ГИ, Иванов СВ, Костин МЮ, и др. Формирование поперечно-плоского дозового поля и первые радиобиологические эксперименты на углеродном пучке, выведенном из У-70. Приборы и техника эксперимента. 2015;58(4):107-16. DOI: 10.7868/S0032816215040011 [Antipov YM, Britvich GI, Ivanov SV, Kostin MY, Lebedev OP, Lyudmirskii EA, et al. Transversally-flat dose field formation and primary radiobiological exercises with the carbon beam extracted from the U-70 synchrotron. Instruments and Experimental Techniques. 2015;58(4):552-61. DOI: 10.1134/S0020441215040016. (in Russ.)].
21. Бекетов ЕЕ, Исаева ЕВ, Трошина МВ, Лычагин АА, и др. Результаты предварительных исследований биологической эффективности пучка ионов углерода ускорителя У-70. Радиационная биология. Радиоэкология. 2017;57(5):462-70 [Beketov EE, Isaeva EV, Troshina MV, Lychagin AA, Solovev AN, Koryakin SN, et al. Results of the Preliminary Study on the Evaluation of the Biological Effectiveness of Carbon Ion Beam from U-70 Accelerator. Radiation Biology. Radioecology. 2017;57(5):462-70. DOI: 10.7868/S0869803117050022. (in Russ.)].
22. Каприн АД, Галкин ВН, Жаворонков ЛП, Иванов ВК и др. Синтез фундаментальных и прикладных исследований — основа обеспечения высокого уровня научных результатов и внедрения их в медицинскую практику. Радиация и риск. 2017;26(2):26-40. DOI: 10.21870/0131-3878-2017-26-2-26-40 [Kaprin AD, Galkin VN, Zhavoronkov LP, Ivanov VK, Ivanov SA, Romanko YuS. Synthesis of basic and applied research is the basis of obtaining high-quality findings and translating them into clinical practice. Radiation and Risk. 2017;26(2):26-40. DOI: 10.21870/0131-3878-2017-26-2-26-40. (in Russ.)].
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 04.02.2019.
Accepted for publication: 12.03.2020.