JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2021. Vol. 66. № 5. P. 5–10
Influence of Powerful Non-Ionizing Terahertz Radiation
on Healthy and Tumor Human Cells of Neural Origin
R.O. Shatalova1, S.A. Gurova1, V.A. Revkova2, I.V. Ilina3, D.S. Sitnikov3
1National Research Nuclear University, MEPhi Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
2Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Moscow, Russia
3Joint Institute for High Temperatures, Moscow, Russia
Contact person: Dmitry Sergeevich Sitnikov: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Purpose: Study of the influence of high-power pulses of coherent non-ionizing terahertz (THz) radiation on the formation of foci of double-strand DNA breaks and the proliferative activity of human neuronal cells.
Material and methods: Irradiated cell cultures are direct reprogramming neural progenitor cells (drNPCs), neuroblastoma cells (SK-N-BE). Cells are irradiated with a sequence of THz radiation pulses with a peak intensity of ~ 20 GW/cm2 and electric field strength of 2.8 MV/cm. Irradiation lasts 30 mins.
Results: There is no statistically significant difference in the number of γH2AX histone foci between experimental and control cell groups.
Conclusion: It was shown that a short exposure (30 min) of cells to THz radiation with intensity of 20 GW/cm2 does not affect the proliferative activity of both neural progenitor cells and neuroblastoma cells and does not cause a significant increase in γH2AX foci in any of the studied cell lines.
Key words: non-ionizing radiation, terahertz radiation, H2AX histone foci, proliferative activity, neural stem cells, SK-N-BE neuroblastoma
For citation: Shatalova RO, Gurova SA, Revkova VA, Ilina IV, Sitnikov DS. Influence of Powerful Non-Ionizing Terahertz Radiation on Healthy and Tumor Human Cells of Neural Origin. Medical Radiology and Radiation Safety. 2021;66(5):5–10.
DOI: 10.12737/1024-6177-2021-66-5-5-10
References
1. Fröhlich H. Long-range coherence and energy storage in biological systems. Int J Quantum Chem. 1968;2(5):641–9. DOI: 10.1002/qua.560020505.
2. Alexandrov BS, Gelev V, Bishop AR, Usheva A, Rasmussen KØ. DNA breathing dynamics in the presence of a terahertz field. Phys Lett A. 2010;374(10):1214–7. DOI: 10.1016/j.physleta.2009.12.077.
3. Titova LV, Ayesheshim AK, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann FA, et al. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Sci Rep. 2013;3(1):2363. DOI: 10.1038/srep02363.
4. Ольшевская ЮС, Козлов АС, Петров АК, Запара ТА, Ратушняк АС. Влияние на нейроны in vitro терагерцового (субмиллиметрового) лазерного излучения. Журнал высшей нервной деятельности им. И.П. Павлова. 2009;59(3):353–9.[Olshevskaya YUS, Kozlov AS, Petrov AK, Zapara TA, Ratushnyak AS. Effect of Terahertz (Submillimeter) Laser Radiation on Neurons in Vitro. Journal of Higher Nervous Activity. I.P. Pavlova. 2009; 59 (3): 353-9.]
5. Zapara TA, Treskova SP, Ratushniak AS. Effect of antioxidants on the interaction of terahertz (submillimeter) laser radiation and neuronal membrane. J Surf Investig. 2015;9(5):869–71.
6. Cheon H, Paik JH, Choi M, Yang HJ, Son JH. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci Rep. 2019;9(1):1–10. DOI: 10.1038/s41598-019-42855-x.
7. Tan SZ, Tan PC, Luo LQ, Chi YL, Yang ZL, Zhao XL, et al. Exposure Effects of Terahertz Waves on Primary Neurons and Neuron-like Cells Under Nonthermal Conditions. Biomed Environ Sci. 2019;32(10):739–54. DOI: 10.3967/bes2019.094.
8. Perera PGT, Appadoo DRT, Cheeseman S, Wandiyanto J V, Linklater D, Dekiwadia C, et al. PC 12 pheochromocytoma cell response to super high frequency terahertz radiation from synchrotron source. Cancers (Basel). 2019;11(2):1–17. DOI: 10.3390/cancers11020162.
9. Maskey D, Pradhan J, Aryal B, Lee C-M, Choi I-Y, Park K-S, et al. Chronic 835-MHz radiofrequency exposure to mice hippocampus alters the distribution of calbindin and GFAP immunoreactivity. Brain Res. 2010;1346(Maskey2010):237–46. DOI: 10.1016/j.brainres.2010.05.045.
10. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo. J Cell Biol. 1999;146(5):905–16. DOI: 10.1083/jcb.146.5.905.
11. Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans. 2018 Oct 19;46(5):1213–24. DOI: 10.1042/BST20180519.
12. Sitnikov DS, Ilina I V, Pronkin AA. Experimental system for studying bioeffects of intense terahertz pulses with electric field strength up to 3.5 MV/cm. Opt Eng. 2020;59(06):061613. DOI: 10.1117/1.OE.59.6.061613.full
13. Овчинников АВ, Чефонов ОВ, Ситников ДС, Ильина ИВ, Ашитков СИ, Агранат МБ, Источник терагерцевого излучения с напряженностью электрического поля свыше 1 МВ/см на основе фемтосекундного хром-форстеритового лазера с частотой следования импульсов 100 Гц. Квантовая электроника. 2018;48(6):554–8. [Ovchinnikov AV, Chefonov OV, Sitnikov DS, Il’ina I V, Ashitkov SI, Agranat MB. A source of THz radiation with electric field strength of more than 1 MV cm-1 on the basis of 100-Hz femtosecond Cr : forsterite laser system. Quantum Electron. 2018;48(6):554–8. (In Russian) DOI: 10.1070/ qel16681].
14. Sitnikov DS, Romashevskiy SA, Ovchinnikov A V, Chefonov O V, Savel’ev AB, Agranat MB. Estimation of THz field strength by an electro-optic sampling technique using arbitrary long gating pulses. Laser Phys Lett. 2019;16(11):115302. DOI: 10.1088/1612-202X/ab4d56.
15. Ситников ДС, Ильина ИВ, Гурова СА, Шаталова РО, Ревкова ВА. Исследование индукции двунитевых разрывов в фибробластах кожи человека терагерцевым излучением высокой интенсивности. Известия Российской Академии Наук Серия Физическая. 2020;84:1605–16. DOI: 10.31857/s0367676520110277. [Sitnikov DS, Ilina I V, Gurova SA, Shatalova RO, Revkova VA. Studying the Induction of Double-Strand Breaks in Human Fibroblasts by High-Intensity Terahertz Radiation. Bull Russ Acad Sci Phys. 2020;84(11):1370–4. (In Russian) DOI: 10.3103/S1062873820 110-246].
16. Dhuppar S, Roy S, Mazumder A. γH2AX in the S Phase after UV Irradiation Corresponds to DNA Replication and Does Not Report on the Extent of DNA Damage. Mol Cell Biol. 2020;40(20). DOI: 10.1128/MCB.00328-20.
17. Bourge M, Fort C, Soler M, Satiat‐Jeunemaître B, Brown SC. A pulse-chase strategy combining click‐EdU and photoconvertible fluorescent reporter: tracking Golgi protein dynamics during the cell cycle. New Phytol. 2015;205(2):938–50. DOI: 10.1111/nph.13069.
18. Yu T, MacPhail SH, Banáth JP, Klokov D, Olive PL. Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair (Amst). 2006;5(8):935–46. DOI: 10.1016/j.dnarep.2006.05.040.
19. Sitnikov DS, Ilina I V., Revkova VA, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Effect of high-power pulses of terahertz radiation on cell viability. In: 2020 International Conference Laser Optics (ICLO). IEEE; 2020. p. 1. DOI: 10.1109/ICLO48556.2020.9285431.
20. Nagelkerke A, Span PN. Staining Against Phospho-H2AX (γ-H2AX) as a Marker for DNA Damage and Genomic Instability in Cancer Tissues and Cells. In: Koumenis C, Coussens LM, Giaccia A, Hammond E, editors. Tumor Microenvironment. Springer International Publishing; 2016. p. 1–10. PMID: 27325258 DOI: 10.1007/978-3-319-26666-4_1
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The authors declare no conflict of interest.
Financing. The studies were carried out using the UNU "Laser terawatt femtosecond complex", which is part of the Center for Collective Use "Laser femtosecond complex" of the Joint Institute for High Temperatures of the Russian Academy of Sciences with the financial support of the Russian Foundation for Basic Research within the framework of scientific project No. 19-02-00762.
Contribution. Development of the research concept and assembly of the experimental scheme - D. Sitnikov;
development of research design, work with cell culture, study of THz exposure - Revkova VA;
conducting experiments on irradiation of cells - Sitnikov D.S., Ilyina I.V., Gurova S.A., Shatalova R.O.,
statistical data processing - Gurova S.A., Shatalova R.O.,
writing and scientific editing of text - all authors.
Article received: 16.03.2021.
Accepted for publication: 21.04.2021.