JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2022. Vol. 67. № 4
X-ray and Radionuclide Imaging in the Diagnosis
of ACTH-Producing Neuroendocrine Tumors
O.O. Golounina1, K.Yu. Slashchuk2, A.V. Khairieva2, N.V. Tarbaeva2,
M.V. Degtyarev2, Zh.E. Belaya2
1I.M. Sechenov First Moscow State Medical University, Moscow, Russia
2The National Medical Research Center for Endocrinology, Moscow, Russia
Contact person: Golounina Olga Olegovna, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
ABSTRACT
Ectopic ACTH syndrome caused by excessive production of adrenocorticotropic hormone (ACTH) by a neuroendocrine tumor (NET) is an extremely rare disease, the main manifestation of which is pronounced hypercortisolism. In order to avoid the development of life-threatening complications and disability of the patient, timely topical diagnosis and rapid decision-making on further management tactics are necessary. The problem of the diagnosis of NET and differential diagnosis with other formations remains relevant and one of the little-studied. Despite the existing wide arsenal of methods of conventional diagnostics, functional and receptor imaging, the source of the disease remains unidentified in about 20% of patients. This article discusses the modern possibilities of NET visualization using conventional and radionuclide imaging methods, demonstrates the diagnostic capabilities of somatostatin-receptor scintigraphy and single-photon emission computed tomography combined with computed tomography (SPECT/CT) and combined positron emission and computed tomography (PET/CT) in the visualization of NET producing ACTH, and analyzes existing radiopharmaceuticals.
Keywords: multislice computed tomography, somatostatin-receptor scintigraphy, SPECT/CT, PET/CT, ectopic ACTH syndrome; neuroendocrine tumor (NET)
For citation: Golounina OO, Slashchuk KYu, Khairieva AV, Tarbaeva NV, Degtyarev MV, Belaya ZhE. X-ray and Radionuclide Imaging in the Diagnosis of ACTH-Producing Neuroendocrine Tumors. Medical Radiology and Radiation Safety. 2022;67(4):80-88. DOI: 10.33266/1024-6177-2022-67-4-80-88
References
1. Ilias I., Torpy D.J., Pacak K., Mullen N., Wesley R.A., Nieman L.K. Cushing’s Syndrome Due to Ectopic Corticotropin Secretion: Twenty Years’ Experience at the National Institutes of Health. J. Clin. Endocrinol Metab. 2005;90;8:4955–4962. doi: 10.1210/jc.2004-2527.
2. Голоунина О.О., Белая Ж.Е., Рожинская Л.Я., Марова Е.И., Пикунов М.Ю., Хандаева П.М. и др. Клинико-лабораторная характеристика и результаты лечения пациентов с АКТГ-продуцирующими нейроэндокринными опухолями различной локализации // Терапевтический архив. 2021. Т.93, № 10. С. 1171–1178. [Golounina O.O., Belaya Zh.Ye., Rozhinskaya L.Ya., Marova Ye.I., Pikunov M.Yu., Khandayeva P.M., et al. Clinical and Laboratory Characteristics and Results of Treatment of Patients with ACTH-Producing Neuroendocrine Tumors of Various Localization. Terapevticheskiy Arkhiv = Therapeutic Archive. 2021;93;10:1171–1178 (In Russ.)]. doi: 10.26442/00403660.2021.10.201102.
3. Isidori A.M., Sbardella E., Zatelli M.C., Boschetti M., Vitale G., Colao A., et al. Conventional and Nuclear Medicine Imaging in Ectopic Cushing’s Syndrome: A Systematic Review. The Journal of Clinical Endocrinology & Metabolism. 2015;100;9:3231–3244. doi: 10.1210/JC.2015-1589.
4. Zemskova M.S., Gundabolu B., Sinaii N., Chen C.C., Carrasquillo J.A., Whatley M., et al. Utility of Various Functional and Anatomic Imaging Modalities for Detection of Ectopic Adrenocorticotropin-Secreting Tumors. J. Clin. Endocrinol Metab. 2010;95;3:1207–1219. doi: 10.1210/jc.2009-2282.
5. Kwekkeboom D.J., Kam B.L., van Essen M., Teunissen J.J.M., van Eijck C.H.J., Valkema R., et al. Somatostatin Receptor-Based Imaging and Therapy of Gastroenteropancreatic Neuroendocrine Tumors. Endocrine-Related Cancer. 2010;17;1:53–73. doi: 10.1677/ERC-09-0078.
6. Bhanat E., Koch C.A., Parmar R., Garla V., Vijayakumar V. Somatostatin Receptor Expression in Non-Classical Locations – Clinical Relevance? Rev. Endocr. Metab. Disord. 2018;19;2:123–132. doi: 10.1007/s11154-018-9470-3.
7. Koopmans K.P., Neels O.N., Kema I.P., Elsinga P.H., Links T.P., de Vries E.G.E., Jager P.L. Molecular Imaging in Neuroendocrine Tumors: Molecular Uptake Mechanisms and Clinical Results. Crit. Rev. Oncol. Hematol. 2009;71;3:199–213. doi: 10.1016/j.critrevonc.2009.02.009.
8. Krenning E.P., Kwekkeboom D.J., Bakker W.H., Breeman W.A., Kooij P.P., Oei H.Y., et al. Somatostatin Receptor Scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-Octreotide: the Rotterdam experience with more than 1000 Patients. Eur. J. Nucl. Med. 1993;20;8:716–731. doi: 10.1007/BF00181765.
9. Jamar F., Fiasse R., Leners N., Pauwels S. Somatostatin Receptor Imaging with Indium-111-Pentetreotide in Gastroenteropancreatic Neuroendocrine Tumors: Safety, Efficacy and Impact on Patient Management. J. Nucl. Med. 1995;36;4:542–549.
10. Raderer M., Kurtaran A., Leimer M., Angelberger P., Niederle B., Vierhapper H., et al. Value of Peptide Receptor Scintigraphy Using 123I-Vasoactive Intestinal Peptide and 111In-DTPA-D-Phe1-Octreotide in 194 Carcinoid Patients: Vienna University Experience, 1993 to 1998. J. Clin. Oncol. 2000;18;6:1331–1336. doi: 10.1200/JCO.2000.18.6.1331.
11. Binderup T., Knigge U., Loft A., Mortensen J., Pfeifer A., Federspiel B., et al. Functional Imaging of Neuroendocrine Tumors: A Head-to-Head Comparison of Somatostatin Receptor Scintigraphy, 123 I-MIBG Scintigraphy, and 18 F-FDG PET. J. Nucl. Med. 2010;51;5:704–712. doi: 10.2967/jnumed.109.069765.
12. Рыжкова Д.В., Тихонова Д.Н., Гринева Е.Н. Методы ядерной медицины в диагностике нейроэндокринных опухолей // Сибирский онкологический журнал. 2013. № 6. С. 56–63. [Ryzhkova D.V., Tikhonova D.N., Grineva Ye.N. Nuclear Medicine Technology for Diagnosis of Neuroendocrine Tumors. Siberian Journal of Oncology. 2013;6:56–63 (In Russ.)].
13. Sundin A. Novel Functional Imaging of Neuroendocrine Tumors. Endocrinology and Metabolism Clinics of North America. 2018;47;3:505–523. doi: 10.1016/j.ecl.2018.04.003.
14. Слащук К.Ю., Румянцев П.О., Дегтярев М.В., Серженко С.С., Баранова О.Д., Трухин А.А., Сирота Я.И. Молекулярная визуализация нейроэндокринных опухолей при соматостатин-рецепторной сцинтиграфии (ОФЭКТ/КТ) с 99mTc-Тектроитидом. Медицинская радиология и радиационная безопасность // 2020. Т.65, № 2. С. 44–49. [Slashchuk K.Yu., Rumyantsev P.O., Degtyarev M.V., Serzhenko S.S., Baranova O.D., Trukhin A.A., Sirota Ya.I. Molecular Imaging of Neuroendocrine Tumors by Somatostatin-Receptor Scintigraphy (SPECT/CT) with 99mTc-Tektrotyd. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2020;65;2:44–49 (In Russ)]. doi: 10.12737/1024-6177-2020-65-2-44-49.
15. Young J., Haissaguerre M., Viera-Pinto O., Chabre O., Baudin E., Tabarin A. Management of Endocrine Disease: Cushing’s Syndrome Due to Ectopic ACTH Secretion: an Expert Operational Opinion. Eur. J.. Endocrinol 2020;182;4:29–58. doi: 10.1530/EJE-19-0877.
16. Kaltsas G., Korbonits M., Heintz E., Mukherjee J.J., Jenkins P.J., Chew S.L., et al. Comparison of Somatostatin Analog and Meta-Iodobenzylguanidine Radionuclides in the Diagnosis and Localization of Advanced Neuroendocrine Tumors. J. Clin. Endocrinol Metab. 2001;86;2:895–902. doi: 10.1210/jcem.86.2.7194.
17. Ezziddin S., Logvinski T., Yong-Hing C., Ahmadzadehfar H., Fischer H.-P., Palmedo H., et al. Factors Predicting Tracer Uptake in Somatostatin Receptor and MIBG Scintigraphy of Metastatic Gastroenteropancreatic Neuroendocrine Tumors. J. Nucl. Med. 2006;47;2:223–233.
18. Virgolini I., Ambrosini V., Bomanji J.B., Baum R.P., Fanti S., Gabriel M., et al. Procedure Guidelines for PET/CT Tumour Imaging with 68Ga-DOTA-Conjugated Peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging. 2010;37;10:2004–2010. doi: 10.1007/s00259-010-1512-3.
19. Bodei L., Ambrosini V., Herrmann K., Modlin I. Current Concepts in 68Ga-DOTATATE Imaging of Neuroendocrine Neoplasms: Interpretation, Biodistribution, Dosimetry, and Molecular Strategies. J. Nucl. Med. 2017;58;11:1718–1726. doi: 10.2967/jnumed.116.186361.
20. Reubi J.C., Schär J.C., Waser B., Wenger S., Heppeler A., Schmitt J.S., Mäcke H.R. Affinity Profiles for Human Somatostatin Receptor Subtypes SST1-SST5 of Somatostatin Radiotracers Selected for Scintigraphic and Radiotherapeutic Use. Eur. J. Nucl. Med. 2000;27;3:273–282. doi: 10.1007/s002590050034.
21. Poeppel T.D., Binse I., Petersenn S., Lahner H., Schott M., Antoch G., et al. 68Ga-DOTATOC Versus 68Ga-DOTATATE PET/CT in Functional Imaging of Neuroendocrine Tumors. J. Nucl. Med. 2011;52;12:1864–1870. doi: 10.2967/jnumed.111.091165.
22. Geijer H., Breimer L.H. Somatostatin Receptor PET/CT in Neuroendocrine Tumours: Update on Systematic Review and Meta-Analysis. Eur. J. Nucl. Med. Mol. Imaging. 2013;40;11:1770–1780. doi: 10.1007/s00259-013-2482-z.
23. Sadowski S.M., Neychev V., Millo C., Shih J., Nilubol N., Herscovitch P., et al. Prospective Study of 68 Ga-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. JCO. 2016;34;6:588–596. doi: 10.1200/JCO.2015.64.0987.
24. Gabriel S., Garrigue P., Dahan L., Castinetti F., Sebag F., Baumstark K., et al. Prospective Evaluation of 68 Ga-DOTATATE PET/CT in Limited Disease Neuroendocrine Tumours and/or Elevated Serum Neuroendocrine Biomarkers. Clin. Endocrinol. 2018;89;2:155–163. doi: 10.1111/cen.13745.
25. Bergeret S., Charbit J., Ansquer C., Bera G., Chanson P., Lussey-Lepoutre C. Novel PET Tracers: Added Value for Endocrine Disorders. Endocrine. 2019;64;1:14–30. doi: 10.1007/s12020 -019-01895-z.
26. Skoura E., Michopoulou S., Mohmaduvesh M., Panagiotidis E., Al Harbi M., Toumpanakis C., et al. The Impact of 68Ga-DOTATATE PET/CT Imaging on Management of Patients with Neuroendocrine Tumors: Experience from a National Referral Center in the United Kingdom. J. Nucl. Med. 2016;57;1:34–40. doi: 10.2967/jnumed.115.166017.
27. Deppen S.A., Blume J., Bobbey A.J., Shah C., Graham M.M., Lee P., et al. 68Ga-DOTATATE Compared with 111 In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis. J. Nucl. Med. 2016;57;6:872–878. doi: 10.2967/jnumed.115.165803.
28. Treglia G., Castaldi P., Rindi G., Giordano A., Rufini V. Diagnostic Performance of Gallium-68 Somatostatin Receptor PET and PET/CT in Patients with Thoracic and Gastroenteropancreatic Neuroendocrine Tumours: a Meta-Analysis. Endocrine. 2012;42;1:80–87. doi: 10.1007/s12020-012-9631-1.
29. Mojtahedi A., Thamake S., Tworowska I., Ranganathan D., Delpassand E.S. The Value of 68Ga-DOTATATE PET/CT in Diagnosis and Management of Neuroendocrine Tumors Compared to Current FDA Approved Imaging Modalities: a Review of Literature. Am. J. Nucl. Med. Mol. Imaging. 2014;4;5:426–434.
30. Johnbeck C.B., Knigge U., Kjær A. PET Tracers for Somatostatin Receptor Imaging of Neuroendocrine Tumors: Current Status and Review of the Literature. Future Oncol. 2014;10;14:2259–2277. doi: 10.2217/fon.14.139.
31. Haug A.R., Cindea-Drimus R., Auernhammer C.J., Reincke M., Beuschlein F., Wängler B., et al. Neuroendocrine Tumor Recurrence: Diagnosis with 68Ga-DOTATATE PET/CT. Radiology. 2014;270;2:517–525. doi: 10.1148/radiol.13122501.
32. Wannachalee T., Turcu A.F., Bancos I., Habra M.A., Avram A.M., Chuang H.H., et al. The Clinical Impact of [68 Ga]-DOTATATE PET/CT for the Diagnosis and Management of Ectopic Adrenocorticotropic Hormone - Secreting Tumours. Clin. Endocrinol (Oxf). 2019;91;2:288–294. doi: 10.1111/cen.14008.
33. Goroshi M.R., Jadhav S.S., Lila A.R., Kasaliwal R., Khare S., Yerawar C.G., et al. Comparison of 68Ga-DOTANOC PET/CT and Contrast-Enhanced CT in Localisation of Tumours in Ectopic ACTH Syndrome. Endocr Connect. 2016;5;2:83–91. doi: 10.1530/EC-16-0010.
34. Karageorgiadis A.S., Papadakis G.Z., Biro J., Keil M.F., Lyssikatos C., Quezado M.M., et al. Ectopic Adrenocorticotropic Hormone and Corticotropin-Releasing Hormone Co-Secreting Tumors in Children and Adolescents Causing Cushing Syndrome: A Diagnostic Dilemma and How to Solve It. The Journal of Clinical Endocrinology & Metabolism. 2015;100;1:141–148. doi: 10.1210/jc.2014-2945.
35. Sathyakumar S., Paul T.V., Asha H.S., Gnanamuthu B.R., Paul M.J., Abraham D.T., et al. Ectopic Cushing Syndrome: A 10-Year Experience from a Tertiary Care Center in Southern India. Endocrine Practice. 2017;23;8:907–914. doi: 10.4158/EP161677.OR.
36. Özkan Z.G., Kuyumcu S., Balköse D., Ozkan B., Aksakal N., Yılmaz E., et al. The Value of Somatostatin Receptor Imaging with In-111 Octreotide and/or Ga-68 DOTATATE in localizing Ectopic ACTH Producing Tumors. Mol. Imaging Radionucl Ther. 2013;22;2:49–55. doi: 10.4274/Mirt.69775.
37. Kakade H.R., Kasaliwal R., Jagtap V.S, Bukan A., Budyal S.R., Khare S., et al. Ectopic ACTH-Secreting Syndrome: A Single-Center Experience. Endocrine Practice. 2013;19;6:1007–1014. doi: 10.4158/EP13171.OR.
38. Varlamov E., Hinojosa-Amaya J.M., Stack M., Fleseriu M. Diagnostic Utility of Gallium-68-Somatostatin Receptor PET/CT in Ectopic ACTH-Secreting Tumors: a Systematic Literature Review and Single-Center Clinical Experience. Pituitary. 2019;22;5:445–455. doi: 10.1007/s11102-019-00972-w.
39. Ceccato F., Cecchin D., Gregianin M., Ricci G., Campi C., Crimì F., et al. The Role of 68Ga-DOTA Derivatives PET-CT in Patients with Ectopic ACTH Syndrome. Endocr Connect. 2020:EC-20-0089.R1. doi: 10.1530/EC-20-0089.
40. Liu Q., Zang J., Yang Y., Ling Q., Wu H., Wang P., et al. Head-to-Head Comparison of 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT in Localizing Tumors with Ectopic Adrenocorticotropic Hormone Secretion: a Prospective Study. Eur. J. Nucl. Med. Mol. Imaging. 2021;48;13:4386–4395. doi: 10.1007/s00259-021-05370-8.
41. Davi’ M.V., Salgarello M., Francia G. Positive (68)Ga-DOTATOC-PET/CT after Cortisol Level Control During Ketoconazole Treatment in a Patient with Liver Metastases from a Pancreatic Neuroendocrine Tumor and Ectopic Cushing Syndrome. Endocrine. 2015;49;2:566–567. doi: 10.1007/s12020-014-0391-y.
42. De Bruin C., Hofland L.J., Nieman L.K., van Koetsveld P.M., Waaijers A.M., Sprij-Mooij D.M., et al. Mifepristone Effects on Tumor Somatostatin Receptor Expression in Two Patients with Cushing’s Syndrome Due to Ectopic Adrenocorticotropin Secretion. J. Clin. Endocrinol Metab. 2012;97;2:455–462. doi: 10.1210/jc.2011-1264.
43. Balogova S., Talbot J.-N., Nataf V., Michaud L., Huchet V., Kerrou K., Montravers F. 18F-Fluorodihydroxyphenylalanine vs Other Radiopharmaceuticals for Imaging Neuroendocrine Tumours According to their Type. Eur. J. Nucl. Med. Mol. Imaging. 2013;40;6:943–966. doi: 10.1007/s00259-013-2342-x.
44. Mach R.H., Dehdashti F., Wheeler K.T. PET Radiotracers for Imaging the Proliferative Status of Solid Tumors. PET Clin. 2009;4;1:1–15. doi: 10.1016/j.cpet.2009.04.012.
45. Deng S., Zhang W., Zhang B., Chen Y., Li J., Wu Y. Correlation between the Uptake of 18F-Fluorodeoxyglucose (18F-FDG) and the Expression of Proliferation-Associated Antigen Ki-67 in Cancer Patients: A Meta-Analysis. PLoS ONE. 2015;10;6:e0129028. doi: 10.1371/journal.pone.0129028.
46. Hindié E. The NETPET Score: Combining FDG and Somatostatin Receptor Imaging for Optimal Management of Patients with Metastatic Well-Differentiated Neuroendocrine Tumors. Theranostics. 2017;7;5:1159–1163. doi: 10.7150/thno.19588.
47. Adams S., Baum R., Rink T., Schumm-Dräger P.M., Usadel K.H., Hör G. Limited Value of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography for the Imaging of Neuroendocrine Tumours. Eur. J. Nucl. Med. 1998;25;1:79–83. doi: 10.1007/s002590050197.
48. Treglia G., Giovanella L., Lococo F. Evolving Role of PET/CT with Different Tracers in the Evaluation of Pulmonary Neuroendocrine Tumours. Eur. J. Nucl. Med. Mol. Imaging. 2014;41;5:853–855. doi: 10.1007/s00259-014-2695-9.
49. Santhanam P., Taieb D., Giovanella L., Treglia G. PET Imaging in Ectopic Cushing Syndrome: a Systematic Review. Endocrine. 2015;50;2:297–305. doi: 10.1007/s12020-015-0689-4.
50. Xu H., Zhang M., Zhai G., Zhang M., Ning G., Li B. The Role of Integrated 18F-FDG PET/CT in Identification of Ectopic ACTH Secretion Tumors. Endocr. 2009;36;3:385–391. doi: 10.1007/s12020-009-9247-2.
51. Bahri H., Laurence L., Edeline J., Leghzali H., Devillers A., Raoul J.-L., et al. High Prognostic Value of 18F-FDG PET for Metastatic Gastroenteropancreatic Neuroendocrine Tumors: a Long-Term Evaluation. J. Nucl. Med. 2014;55;11:1786–1790. doi: 10.2967/jnumed.114.144386.
52. Panagiotidis E., Bomanji J. Role of 18F-Fluorodeoxyglucose PET in the Study of Neuroendocrine Tumors. PET Clinics 2014;9;1:43–55. doi: 10.1016/j.cpet.2013.08.008.
53. Hofman M.S., Lau W.F.E., Hicks R.J. Somatostatin Receptor Imaging with 68 Ga DOTATATE PET/CT: Clinical Utility, Normal Patterns, Pearls, and Pitfalls in Interpretation. RadioGraphics. 2015;35;2:500–516. doi: 10.1148/rg.352140164.
54. Ambrosini V., Kunikowska J., Baudin E., Bodei L., Bouvier C., Capdevila J., et al. Consensus on Molecular Imaging and Theranostics in Neuroendocrine Neoplasms. European Journal of Cancer. 2021;146:56–73. doi: 10.1016/j.ejca.2021.01.008.
55. Kunikowska J., Ambrosini V., Herrmann K. EANM Focus 3: The International Conference on Molecular Imaging and Theranostics in Neuroendocrine Tumours-the consensus in a nutshell. Eur. J. Nucl. Med. Mol. Imaging. 2021;48;5:1276–1277. doi: 10.1007/s00259-021-05262-x.
PDF (RUS) Full-text article (in Russian)
Conflict of interest. The author declare no conflict of interest.
Financing. Research supported by the Russian Science Foundation (RSF grant 19-15-00398-P)
Contribution. Article was prepared with equal participation of the authors
Article received: 20.04.2022. Accepted for publication: 24.06.2022