JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2022. Vol. 67. № 6

DOI:10.33266/1024-6177-2022-67-6-24-29

A.A. Molokanov, N.P. Potsyapun, E.Yu. Maksimova

Application of New Icrp Recommendations on Dose Calculation
for Workers after Inhalation Intake of Uranium Radionuclides

A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia

Contact person: Andrey Alekseevich Molokanov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Purpose: Harmonization and improvement of the system for regulating the internal radiation exposure of workers and the basic requirements for ensuring radiation safety, taking into account the application of new international requirements and recommendations.

Material and methods: A brief description of the procedure for calculating absorbed and equivalent doses in organs and tissues after the intake of radionuclides into the human body is presented, using the biokinetic and dosimetric models adopted in the new ICRP recommendations, as well as a discussion of the impact of these changes on the results of calculating dose coefficients for the case of inhalation intake of uranium-235 radionuclide. 

Results: The effective dose values and equivalent doses to organs and tissues for workers were calculated depending on the time after a single inhalation intake of uranium-235 aerosol, according to new models [1–12] and according to previous ICRP models [15, 16]. The calculation of the effective dose according to the new models included calculations of equivalent doses for 14 main organs and tissues and 13 organs and tissues classified as “remainder tissues” as described in ICRP Publication 103 [3]. The committed effective dose was then calculated according to the new approach using the average of the equivalent doses for the reference adult male, HTM, and the reference adult female, HTF, as well as the tissue and organ weighting factors, WT, adopted in ICRP Publication 103. The values of the effective dose and equivalent doses on the red bone marrow, lungs and remainder tissues vs time in the range from several days to 18250 days (50 years) after a single inhalation intake of an aerosol of uranium-235 for standard value AMAD=5 µm and types of compounds F, M, S, F/M and M/S are presented according to new and previous ICRP models.

It is shown that the value of the dose coefficient for type F, calculated by new models, is 2.6 times (2.3E-07÷6.0E-07) less than that calculated by previous ICRP models, and the value of the dose coefficient for type F/M calculated by new models is 1.6 times (3.8E-07÷6.0E-07) less than the value of the dose coefficient for type F calculated by previous ICRP models. For uranium trioxide UO3, taking into account its transition from compound type M to F/M, the value of the dose coefficient for committed effective dose according to the updated model of the respiratory tract is 4.7 times (3.8E-07÷1.8E-06) less than the corresponding value for the previous model of the type M respiratory tract. The committed effective dose value for compound type M, calculated using the new models, is 1.4 times (1.3E-06÷1.8E-06) less than the same value calculated using the previous ICRP models. The value of the committed effective dose for type M/S compounds (which, according to the new model of the respiratory tract, include uranium oxide U3O8 and dioxide UO2), calculated according to new models, is 1.2 times (5.1E-06÷6.1E-06) less than the value calculated from previous ICRP models for type S compounds (which included U3O8 and UO2 in the previous respiratory tract model). 

Conclusion: From the above data it follows that in case of the adoption of national radiation safety standards to new ICRP models, differences in the values of dose coefficients will result in a change of annual limits of intake (ALI) in the corresponding proportion for the types of uranium aerosol compounds noted above. 

Keywords: uranium, inhalation intake, dose coefficient, internal exposure, biokinetic model, dosimetric model, absorbed dose, equivalent dose, organs and tissues, committed effective dose, new ICRP recommendations

For citation: Molokanov AA, Potsyapun NP, Maksimova EYu. Application of New Icrp Recommendations on Dose Calculation for Workers after Inhalation Intake of Uranium Radionuclides. Medical Radiology and Radiation Safety. 2022;67(6):24–29. (In Russian). DOI:10.33266/1024-6177-2022-67-6-24-29

 

References

1. ICRP. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. ICRP Publication 89. Ann. ICRP. 2002;32;3-4. 

2. ICRP. Human Alimentary Tract Model for Radiological Protection. ICRP Publication 100. Ann. ICRP. 2006;36;1-2.

3. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP. 2007;37;2-4.

4. ICRP. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP. 2008;38;3.

5. ICRP. Adult Reference Computational Phantoms. ICRP Publication 110. Ann. ICRP. 2009;39;2.

6. ICRP. Occupational Intakes of Radionuclides: Part 1. ICRP Publication 130. Ann. ICRP. 2015;44;2.

7. ICRP. The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions. ICRP Publication 133. Ann. ICRP. 2016;45;2:1–74.

8. ICRP. Occupational Intakes of Radionuclides: Part 2. ICRP Publication 134. Ann. ICRP. 2016;45;3/4:1–352.

9. ICRP. Occupational Intakes of Radionuclides: Part 3. ICRP Publication 137. Ann. ICRP. 2017;46;3/4.

10. ICRP. Occupational Intakes of radionuclides: Part 4. ICRP Publication 141. Ann. ICRP. 2019;48;2/3.

11. ICRP. Occupational Intakes of Radionuclides: Part 5. ICRP Publication 151. Ann. ICRP. 2022;51;1–2.

12. ICRP. Occupational Intakes of radionuclides: Electronic Annex of ICRP Publications 130, 134, 137, 141, 151. 2022.

13. ICRP. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP. 1991;21;1-3.

14. ICRP. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30. Part 1. Ann. ICRP. 1979;2;3-4.

15. ICRP. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Ann. ICRP. 1994;24;1-3.

16. ICRP. Age-Dependent Doses to Members of the Public from Intake of Radionuclides. Part 2. Ingestion Dose Coefficients. ICRP Publication 67. Ann. ICRP. 1993;23;3-4.

17. Нормы радиационной безопасности НРБ-99/2009. Гигиенические нормативы СП 2.6.1.2523-09. М. 2009. 100 с. [Radiation Safety Standards NRB-99/2009. Hygienic Standards SP 2.6.1.2523-09. Moscow Publ., 2009. 100 p. (In Russ.)].

 

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study was carried out under the Federal Target Program, code “Radiometry-19.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.07.2022. Accepted for publication: 25.09.2022.

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2766099
Today
Yesterday
This week
Last week
This month
Last month
For all time
1993
4471
24483
18409
73842
75709
2766099

Forecast today
2928


Your IP:216.73.216.151