JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2024. Vol. 69. № 2

DOI:10.33266/1024-6177-2024-69-2-12-17

J.M. Rozenberg, V.V. Maximov, D.V. Kuzmin, S.V. Leonov

Mechanisms of Mitochondrial Influence on Tumor Radioresistivity

Institute of Biophysics of the Future, Moscow Region, Dolgoprudny, Russia

Contact person: S.V. Leonov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Radiotherapy remains one of the main methods of cancer treatment. At the same time, the formation of radioresistance (RR)of cancer cells to ionizing radiation leads to a loss of therapy effectiveness. The toxicity of radiotherapy is determined by mitochondria, and the use of mitochondria or their components in combination with chemo-radio and immunotherapy can increase the effectiveness of treatment. In this review, we have reviewed new, experimental methods for using mitochondria in cancer therapy. Literature data indicate that although the physiological transport of mitochondria promotes carcinogenesis and resistance to chemotherapy, transplantation of exogenous mitochondria, on the contrary, induces radiosensitivity and inhibits tumor growth in mouse models of cancer. Therefore, inhibition of endogenous transfer of cancer mitochondria or the development of methods for the delivery of exogenous mitochondria is a promising area for the development of anti-cancer drugs.

Keywords: radioresistance, cancer, mitochondrial transfer, mitochondrial transplantation

For citation: Rozenberg JM, Maximov VV, Kuzmin DV, Leonov SV. Mechanisms of Mitochondrial Influence on Tumor Radioresisti-
vity. Medical Radiology and Radiation Safety. 2024;69(2):12–17. (In Russian). DOI:10.33266/1024-6177-2024-69-2-12-17

 

References

1. Bajzikova M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova, K., Svec D., Hubackova S., Endaya B., Judasova K., Bezawork-Geleta A., Kluckova K., Chatre L., Zobalova R., Novakova A., Vanova K., Ezrova Z., Maghzal G.J., Magalhaes Novais S., Olsinova M., Neuzil J. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab. 2019;29:399-416.e10. doi:10.1016/j.cmet.2018.10.014.

2. Grasso D., Medeiros H.C.D., Zampieri L.X., Bol V., Danhier P., van Gisbergen M.W., Bouzin C., Brusa D., Grégoire V., Smeets H., Stassen A.P.M., Dubois L.J., Lambin P., Dutreix M., Sonveaux P. Fitter Mitochondria Are Associated with Radioresistance in Human Head and Neck SQD9 Cancer Cells. Front. Pharmacol. 2020;11:263. doi:10.3389/fphar.2020.00263.

3. Shidara Y., Yamagata K., Kanamori T., Nakano K., Kwong J.Q., Manfredi G., Oda H., Ohta S. Positive Contribution of Pathogenic Mutations in the Mitochondrial Genome to the Promotion of Cancer by Prevention from Apoptosis. Cancer Res. 2005;65:1655–1663. doi:10.1158/0008-5472.CAN-04-2012.

4. Marquez J., Flores J., Kim A.H., Nyamaa B., Nguyen A.T.T., Park N., Han J. Rescue of TCA Cycle Dysfunction for Cancer Therapy. J. Clin. Med. 2019;8. doi:10.3390/jcm8122161.

5. Missiroli S., Perrone M., Genovese I., Pinton P., Giorgi C. Cancer Metabolism and Mitochondria: Finding Novel Mechanisms to Fight Tumours. EBioMedicine. 2020;59;102943. doi:10.1016/j.ebiom.2020.102943.

6. Pirozzi C.J., Yan H. The Implications of IDH Mutations for Cancer Development and Therapy. Nat. Rev. Clin. Oncol. 2021;18:645–661. doi:10.1038/s41571-021-00521-0.

7. Han S., Liu Y., Cai S.J., Qian M., Ding J., Larion M., Gilbert M.R., Yang C. IDH Mutation in Glioma: Molecular Mechanisms and Potential Therapeutic Targets. Br. J. Cancer 2020;122:1580–1589. doi:10.1038/s41416-020-0814-x.

8. Ekoue D.N., He C., Diamond A.M., Bonini, M.G. Manganese Superoxide Dismutase and Glutathione Peroxidase-1 Contribute to the Rise and Fall of Mitochondrial Reactive Oxygen Species which Drive Oncogenesis. Biochim. Biophys. Acta Bioenerg. 2017;1858:628–632. doi:10.1016/j.bbabio.2017.01.006.

9. Wang X., Gerdes H.H. Transfer of Mitochondria Via Tunneling Nanotubes Rescues Apoptotic PC12 Cells. Cell. Death Differ. 2015;22:1181–1191. doi:10.1038/cdd.2014.211.

10. Yang F., Zhang Y., Liu S., Xiao J., He Y., Shao Z., Zhang Y., Cai X., Xiong L. Tunneling Nanotube-Mediated Mitochondrial Transfer Rescues Nucleus Pulposus Cells from Mitochondrial Dysfunction and Apoptosis. Oxid. Med. Cell. Longev. 2022;2022:3613319. doi:10.1155/2022/3613319.

11. Khattar K.E., Safi J., Rodriguez A.-M., Vignais M.-L. Intercellular Communication in the Brain Through Tunneling Nanotubes. Cancers (Basel). 2022;14. doi:10.3390/cancers14051207.

12. Dong L.-F., Rohlena J., Zobalova R., Nahacka Z., Rodriguez A.-M., Berridge M.V., Neuzil J. Mitochondria on the Move: Horizontal Mitochondrial Transfer in Disease and Health. J. Cell Biol. 2023;222. doi:10.1083/jcb.202211044.

13. Morrison T.J., Jackson M.V., Cunningham E.K., Kissenpfennig A., McAuley D.F., O’Kane C.M., Krasnodembskaya A.D. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am. J. Respir. Crit. Care Med. 2017;196:1275–1286. doi:10.1164/rccm.201701-0170OC.

14. O’Brien C.G., Ozen M.O., Ikeda G., Vaskova E., Jung J.H., Bayardo N., Santoso M.R., Shi L., Wahlquist C., Jiang Z., Jung Y., Zeng Y., Egan E., Sinclair R., Gee A., Witteles R., Mercola M., Svensson K.J., Demirci U., Yang P.C. Mitochondria-Rich Extracellular Vesicles Rescue Patient-Specific Cardiomyocytes from Doxorubicin Injury: Insights into the SENECA Trial. JACC CardioOncol. 2021;3:428–440. doi:10.1016/j.jaccao.2021.05.006.

15. Liang W., Sagar S., Ravindran R., Najor R.H., Quiles J.M., Chi L., Diao R.Y., Woodall B.P., Leon L.J., Zumaya E., Duran J., Cauvi D.M., De Maio A., Adler E.D., Gustafsson Å.B. Mitochondria Are Secreted in Extracellular Vesicles when Lysosomal Function Is Impaired. Nat. Commun. 2023;14:5031. doi:10.1038/s41467-023-40680-5.

16. Yang J., Liu L., Oda Y., Wada K., Ago M., Matsuda S., Hattori M., Goto T., Ishibashi S., Kawashima-Sonoyama Y., Matsuzaki Y., Taketani T. Extracellular Vesicles and Cx43-Gap Junction Channels Are the Main Routes for Mitochondrial Transfer from Ultra-Purified Mesenchymal Stem Cells, RECs. Int. J. Mol. Sci. 2023;24. doi:10.3390/ijms241210294.

17. Guo R., Davis D., Fang Y. Intercellular Transfer of Mitochondria Rescues Virus-Induced Cell Death But Facilitates Cell-to-Cell Spreading of Porcine Reproductive and Respiratory Syndrome Virus. Virology. 2018;517:122–134. doi:10.1016/j.virol.2017.12.018.

18. Liu D., Gao Y., Liu J., Huang Y., Yin J., Feng Y., Shi L., Meloni B.P., Zhang C., Zheng M., Gao J. Intercellular Mitochondrial Transfer as a Means of Tissue Revitalization. Signal Transduct. Target. Ther. 2021;6;65. doi:10.1038/s41392-020-00440-z.

19. Alexander J.F., Seua A.V., Arroyo L.D., Ray P.R., Wangzhou A., Heiβ-Lückemann L., Schedlowski M., Price T.J., Kavelaars A., Heijnen C.J. Nasal Administration of Mitochondria Reverses Chemotherapy-Induced Cognitive Deficits. Theranostics. 2021;11:3109–3130. doi:10.7150/thno.53474.

20. Marlein C.R., Zaitseva L., Piddock R.E., Robinson S.D., Edwards D.R., Shafat M.S., Zhou Z., Lawes M., Bowles K.M., Rushworth S.A. NADPH Oxidase-2 Derived Superoxide Drives Mitochondrial Transfer from Bone Marrow Stromal Cells to Leukemic Blasts. Blood. 2017;130:1649–1660. doi:10.1182/blood-2017-03-772939.

21. Rozenberg J.M., Zvereva S., Dalina A., Blatov I., Zubarev I., Luppov D., Bessmertnyi A., Romanishin A., Alsoulaiman L., Kumeiko V., Kagansky A., Melino G., Ganini C., Barlev N.A. The p53 Family Member p73 in the Regulation of Cell Stress Response. Biol. Direct. 2021;16;23. doi:10.1186/s13062-021-00307-5.

22. Wei M.C., Zong W.X., Cheng E.H., Lindsten T., Panoutsakopoulou V., Ross A.J., Roth K.A., MacGregor G.R., Thompson C.B., Korsmeyer S.J. Proapoptotic BAX and BAK: a Requisite Gateway to Mitochondrial Dysfunction and Death. Science. 2001;292:727–730. doi:10.1126/science.1059108.

23. Julien O., Wells J.A. Caspases and Their Substrates. Cell. Death Differ. 2017;24:1380–1389. doi:10.1038/cdd.2017.44.

24. Cao X., Wen P., Fu Y., Gao Y., Qi X., Chen B., Tao Y., Wu L., Xu A., Lu H., Zhao G. Radiation Induces Apoptosis Primarily Through the Intrinsic Pathway in Mammalian Cells. Cell. Signal. 2019;62:109337. doi:10.1016/j.cellsig.2019.06.002.

25. Wang C., Youle R.J. The Role of Mitochondria in Apoptosis*. Annu. Rev. Genet. 2009;43:95–118. doi:10.1146/annurev-genet-102108-134850.

26. Xia P., Gou W., Wang J., Niu Z., Chen S., Takano Y., Zheng H. Distinct Radiosensitivity of Lung Carcinoma Stem-Like Side Population and Main Population Cells. Cancer Biother. Radiopharm. 2013;28:471–478. doi:10.1089/cbr.2012.1388.

27. Tigano M., Vargas D.C., Tremblay-Belzile S., Fu Y., Sfeir A. Nuclear Sensing of Breaks in Mitochondrial DNA Enhances Immune Surveillance. Nature. 2021;591:477–481. doi:10.1038/s41586-021-03269-w.

28. West A.P., Khoury-Hanold W., Staron M., Tal M.C., Pineda C.M., Lang S.M., Bestwick M., Duguay B.A., Raimundo N., MacDuff D.A., Kaech S.M., Smiley J.R., Means R.E., Iwasaki A., Shadel G.S. Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response. Nature. 2015;520:553–557. doi:10.1038/nature14156.

29. Guan H., Zhang W., Xie D., Nie Y., Chen S., Sun X., Zhao H., Liu X., Wang H., Huang X., Bai C., Huang B., Zhou P., Gao S. Cytosolic Release of Mitochondrial DNA and Associated cGAS Signaling Mediates Radiation-Induced Hematopoietic Injury of Mice. Int. J. Mol. Sci. 2023;24. doi:10.3390/ijms24044020.

30. Cruz-Gregorio A., Aranda-Rivera A.K., Amador-Martinez I., Maycotte P. Mitochondrial Transplantation Strategies in Multifaceted Induction of Cancer Cell Death. Life Sci. 2023;332:122098. doi:10.1016/j.lfs.2023.122098.

31. Zhou W., Zhao Z., Yu Z., Hou Y., Keerthiga R., Fu A. Mitochondrial Transplantation Therapy Inhibits the Proliferation of Malignant Hepatocellular Carcinoma and Its Mechanism. Mitochondrion. 2022;65:11–22. doi:10.1016/j.mito.2022.04.004.

32. Yu Z., Hou Y., Zhou W., Zhao Z., Liu Z., Fu A. The Effect of Mitochondrial Transplantation Therapy from Different Gender on Inhibiting Cell Proliferation of Malignant Melanoma. Int. J. Biol. Sci. 2021;17:2021–2033. doi:10.7150/ijbs.59581.

33. Chang J.-C., Chang H.-S., Wu Y.-C., Cheng W.-L., Lin T.-T., Chang H.-J., Kuo S.-J., Chen S.-T., Liu C.-S. Mitochondrial Transplantation Regulates Antitumour Activity, Chemoresistance and Mitochondrial Dynamics in Breast Cancer. J. Exp. Clin. Cancer Res. 2019;38;30. doi:10.1186/s13046-019-1028-z.

34. Sun C., Liu X., Wang B., Wang Z., Liu Y., Di C., Si J., Li H., Wu Q., Xu D., Li J., Li G., Wang Y., Wang F., Zhang H. Endocytosis-Mediated Mitochondrial Transplantation: Transferring Normal Human Astrocytic Mitochondria into Glioma Cells Rescues Aerobic Respiration and Enhances Radiosensitivity. Theranostics. 2019;9:3595–3607. doi:10.7150/thno.33100.

35. Valko Z., Megyesfalvi Z., Schwendenwein A., Lang C., Paku S., Barany N., Ferencz B., Horvath-Rozsas A., Kovacs I., Schlegl E., Pozonec V., Boettiger K., Rezeli M., Marko-Varga G., Renyi-Vamos F., Hoda M.A., Klikovits T., Hoetzenecker K., Grusch M., Laszlo V., Schelch K. Dual Targeting of BCL-2 and MCL-1 in the Presence of BAX Breaks Venetoclax Resistance in Human Small Cell Lung Cancer. Br. J. Cancer. 2023;128:1850–1861. doi:10.1038/s41416-023-02219-9.

36. Lochmann T.L., Floros K.V., Naseri M., Powell K.M., Cook W., March R.J., Stein G.T., Greninger P., Maves Y.K., Saunders L.R., Dylla S.J., Costa C., Boikos S.A., Leverson J.D., Souers A.J., Krystal G.W., Harada H., Benes C.H., Faber A.C. Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression. Clin. Cancer Res. 2018;24:360–369. doi:10.1158/1078-0432.CCR-17-1606.

37. Kapoor I., Bodo J., Hill B.T., Hsi E.D., Almasan A. Targeting BCL-2 in B-Cell Malignancies and Overcoming Therapeutic Resistance. Cell. Death Dis. 2020;11;941. doi:10.1038/s41419-020-03144-y.

38. Sharma A., Gaidamakova E.K., Grichenko O., Matrosova V.Y., Hoeke V., Klimenkova P., Conze I.H., Volpe R.P., Tkavc R., Gostinčar C., Gunde-Cimerman N., DiRuggiero J., Shuryak I., Ozarowski A., Hoffman B.M., Daly M.J. Across the Tree of Life, Radiation Resistance Is Governed by Antioxidant Mn2+, Gauged by Paramagnetic Resonance. Proc. Natl. Acad. Sci. USA. 2017;114:E9253–E9260. doi:10.1073/pnas.1713608114.

39. Gaidamakova E.K., Sharma A., Matrosova V.Y., Grichenko O., Volpe R.P., Tkavc R., Conze I.H., Klimenkova P., Balygina I., Horne W.H., Gostinčar C., Chen X., Makarova K.S., Shuryak I., Srinivasan C., Jackson-Thompson B., Hoffman B.M., Daly M.J. Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. MBio. 2022:e0339421. doi:10.1128/mbio.03394-21.

40. Culotta V.C., Daly M.J. Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast. Antioxid. Redox Signal. 2013;19:933–944. doi:10.1089/ars.2012.5093.

41. Gunter T.E., Gavin C.E., Gunter K.K. The Case for Manganese Interaction with Mitochondria. Neurotoxicology. 2009;30:727–729. doi:10.1016/j.neuro.2009.05.003.

42. Rozenberg J.M., Kamynina M., Sorokin M., Zolotovskaia M., Koroleva E., Kremenchutckaya K., Gudkov A., Buzdin A., Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines. 2022;10. doi:10.3390/biomedicines10051072.

43. Daly M.J., Gaidamakova E.K., Matrosova V.Y., Vasilenko A., Zhai M., Venkateswaran A., Hess M., Omelchenko M.V., Kostanda-
rithes H.M., Makarova K.S., Wackett L.P., Fredrickson J.K., Ghosal D. Accumulation of Mn(II) in Deinococcus Radiodurans Facilitates Gamma-Radiation Resistance. Science. 2004;306:1025–1028. doi:10.1126/science.1103185.

44. Lu C.-L., Qin L., Liu H.-C., Candas D., Fan M., Li J.J. Tumor Cells Switch to Mitochondrial Oxidative Phosphorylation under Radiation Via mTOR-Mediated Hexokinase II Inhibition--a Warburg-Reversing Effect. PLoS ONE. 2015;10:e0121046. doi:10.1371/journal.pone.0121046.

45. Krysztofiak A., Szymonowicz K., Hlouschek J., Xiang K., Waterkamp C., Larafa S., Goetting I., Vega-Rubin-de-Celis S., Theiss C., Matschke V., Hoffmann D., Jendrossek V., Matschke J. Metabolism of Cancer Cells Commonly Responds to Irradiation by a Transient Early Mitochondrial Shutdown. iScience. 2021;24:103366. doi:10.1016/j.isci.2021.103366.

46. Sun C., Wang Z., Liu Y., Liu Y., Li H., Di C., Wu Z., Gan L., Zhang H. Carbon Ion Beams Induce Hepatoma Cell Death by NADPH Oxidase-Mediated Mitochondrial Damage. J. Cell. Physiol. 2014;229:100–107. doi:10.1002/jcp.24424.

47. Cloos C.R., Daniels D.H., Kalen A., Matthews K., Du J., Goswami P.C., Cullen J.J. Mitochondrial DNA Depletion Induces Radioresistance by Suppressing G2 Checkpoint Activation in Human Pancreatic Cancer Cells. Radiat. Res. 2009;171:581–587. doi:10.1667/RR1395.1.

48. Wei Y., Chen L., Xu H., Xie C., Zhou Y., Zhou F. Mitochondrial Dysfunctions Regulated Radioresistance through Mitochondria-to-Nucleus Retrograde Signaling Pathway of NF-κB/PI3K/AKT2/mTOR. Radiat. Res. 2018;190:204–215. doi:10.1667/RR15021.1.

49. Chen S., Liao Z., Xu P. Mitochondrial Control of Innate Immune Responses. Front. Immunol. 2023;14:1166214. doi:10.3389/fimmu.2023.1166214.

50. Zhu M., Barbas A.S., Lin L., Scheuermann U., Bishawi M., Brennan T.V. Mitochondria Released by Apoptotic Cell Death Initiate Innate Immune Responses. Immunohorizons. 2018;2:384–397. doi:10.4049/immunohorizons.1800063.

51. Trishna S., Lavon A., Shteinfer-Kuzmine A., Dafa-Berger A., Shoshan-Barmatz V. Overexpression of the Mitochondrial Anti-Viral Signaling Protein, MAVS, in Cancers Is Associated with Cell Survival and Inflammation. Mol. Ther. Nucleic Acids. 2023;33:713–732. doi:10.1016/j.omtn.2023.07.008.

52. Du Y., Pan D., Jia R., Chen Y., Jia C., Wang J., Hu B. The Reduced Oligomerization of MAVS Mediated by ROS Enhances the Cellular Radioresistance. Oxid. Med. Cell. Longev. 2020;2020:2167129. doi:10.1155/2020/2167129.

53. Norris R.P. Transfer of Mitochondria and Endosomes between Cells by Gap Junction Internalization. Traffic. 2021;22:174–179. doi:10.1111/tra.12786.

54. Hayashida K., Takegawa R., Endo Y., Yin T., Choudhary R.C., Aoki T., Nishikimi M., Murao A., Nakamura E., Shoaib M., Kuschner C., Miyara S.J., Kim J., Shinozaki K., Wang P., Becker L.B. Exogenous Mitochondrial Transplantation Improves Survival and Neurological Outcomes after Resuscitation from Cardiac Arrest. BMC Med. 2023;21:56. doi:10.1186/s12916-023-02759-0.

55. Tang L.-X., Wei B., Jiang L.-Y., Ying Y.-Y., Li K., Chen T.-X., Huang R.-F., Shi M.-J., Xu H. Intercellular Mitochondrial Transfer as a Means of revitalizing Injured Glomerular Endothelial Cells. World J. Stem Cells. 2022;14:729–743. doi:10.4252/wjsc.v14.i9.729.

56. Guo Y., Chi X., Wang Y., Heng B.C., Wei Y., Zhang X., Zhao H., Yin Y., Deng X. Mitochondria Transfer Enhances Proliferation, Migration, and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cell and Promotes Bone Defect Healing. Stem Cell. Res. Ther. 2020;11:245. doi:10.1186/s13287-020-01704-9.

57. Saito K., Zhang Q., Yang H., Yamatani K., Ai T., Ruvolo V., Baran N., Cai T., Ma H., Jacamo R., Kuruvilla V., Imoto J., Kinjo S., Ikeo K., Moriya K., Suzuki K., Miida T., Kim Y.-M., Vellano C.P., Andreeff M., Konopleva M. Exogenous Mitochondrial Transfer and Endogenous Mitochondrial Fission Facilitate AML Resistance to OxPhos Inhibition. Blood Adv. 2021;5:4233–4255. doi:10.1182/bloodadvances.2020003661.

58. Salaud C., Alvarez-Arenas A., Geraldo F., Belmonte-Beitia J., Calvo G.F., Gratas C., Pecqueur C., Garnier D., Pérez-Garcià V., Vallette F.M., Oliver L. Mitochondria Transfer from Tumor-Activated Stromal Cells (TASC) to Primary Glioblastoma Cells. Biochem. Biophys. Res. Commun. 2020;533:139–147. doi:10.1016/j.bbrc.2020.08.101.

59. Nakhle J., Khattar K., Özkan T., Boughlita A., Abba Moussa, D., Darlix A., Lorcy F., Rigau V., Bauchet L., Gerbal-Chaloin S., Daujat-Chavanieu M., Bellvert F., Turchi L., Virolle T., Hugnot J.-P., Buisine N., Galloni M., Dardalhon V., Rodriguez A.-M., Vignais M.-L. Mitochondria Transfer from Mesenchymal Stem Cells Confers Chemoresistance to Glioblastoma Stem Cells through Metabolic Rewiring. Cancer Res. Commun. 2023;3:1041–1056. doi:10.1158/2767-9764.CRC-23-0144.

60. Watson D.C., Bayik D., Storevik S., Moreino S.S., Sprowls S.A., Han J., Augustsson M.T., Lauko A., Sravya P., Røsland G.V., Troike K., Tronstad K.J., Wang S., Sarnow K., Kay K., Lunavat T.R., Silver D.J., Dayal S., Joseph J.V., Mulkearns-Hubert E., Lathia J.D. GAP43-Dependent Mitochondria Transfer from Astrocytes Enhances Glioblastoma Tumorigenicity. Nat. Cancer. 2023;4:648–664. doi:10.1038/s43018-023-00556-5.

61. Cho Y.M., Kim J.H., Kim M., Park S.J., Koh S.H., Ahn H.S., Kang G.H., Lee J.-B., Park K.S., Lee H.K. Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually no Mitochondrial Function But Not with Pathogenic mtDNA Mutations. PLoS ONE. 2012;7:e32778. doi:10.1371/journal.pone.0032778.

62. Lee S.-E., Kang Y.C., Kim Y., Kim S., Yu S.-H., Park J.H., Kim I.-H., Kim H.-Y., Han K., Lee H.K., Kim S.-H., Kim C.-H. Preferred Migration of Mitochondria Toward Cells and Tissues with Mitochondrial Damage. Int. J. Mol. Sci. 2022;23. doi:10.3390/ijms232415734.

63. Golan K., Singh A.K., Kollet O., Bertagna M., Althoff M.J., Khatib-Massalha E., Petrovich-Kopitman E., Wellendorf A.M., Massalha H., Levin-Zaidman S., Dadosh T., Bohan B., V Gawali M., Dasgupta B., Lapidot T., Cancelas J.A. Bone Marrow Regeneration Requires Mitochondrial Transfer from Donor Cx43-Expressing Hematopoietic Progenitors to Stroma. Blood. 2020;136:2607–2619. doi:10.1182/blood.2020005399.

64. Pisani F., Castagnola V., Simone L., Loiacono F., Svelto M., Benfenati F. Role of Pericytes in Blood-Brain Barrier Preservation During Ischemia Through Tunneling Nanotubes. Cell. Death Dis. 2022;13:582. doi:10.1038/s41419-022-05025-y.

65. Crisan M., Yap S., Casteilla L., Chen C.-W., Corselli M., Park T.S., Andriolo G., Sun B., Zheng B., Zhang L., Norotte C., Teng P.-N., Traas J., Schugar R., Deasy B.M., Badylak S., Buhring H.-J., Giacobino J.-P., Lazzari L., Huard J., Péault B. A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell. Stem. Cell. 2008;3:301–313. doi:10.1016/j.stem.2008.07.003.

66. Betzer O., Perets N., Angel A., Motiei M., Sadan T., Yadid G., Offen D., Popovtzer R. In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles. ACS Nano. 2017;11:10883–10893. doi:10.1021/acsnano.7b04495.

67. Perets N., Betzer O., Shapira R., Brenstein S., Angel A., Sadan T., Ashery U., Popovtzer R., Offen D. Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders. Nano Lett. 2019;19:3422–3431. doi:10.1021/acs.nanolett.8b04148.

68. Naaldijk Y., Sherman L.S., Turrini N., Kenfack Y., Ratajczak M.Z., Souayah N., Rameshwar P., Ulrich H. Mesenchymal Stem Cell-Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages During Inflammatory Responses. Stem. Cell. Rev. and Rep. 2023. doi:10.1007/s12015-023-10612-3.

69. Huang T., Lin R., Su Y., Sun H., Zheng X., Zhang J., Lu X., Zhao B., Jiang X., Huang L., Li N., Shi J., Fan X., Xu D., Zhang T., Gao J. Efficient Intervention for Pulmonary Fibrosis Via Mitochondrial Transfer Promoted by Mitochondrial Biogenesis. Nat. Commun. 2023;14:5781. doi:10.1038/s41467-023-41529-7.

70. Luz-Crawford P., Hernandez J., Djouad F., Luque-Campos N., Caicedo A., Carrère-Kremer S., Brondello J.-M., Vignais M.-L., Pène J., Jorgensen C. Mesenchymal Stem Cell Repression of Th17 Cells Is Triggered by Mitochondrial Transfer. Stem Cell. Res. Ther. 2019;10:232. doi:10.1186/s13287-019-1307-9.

71. Pinto G., Saenz-de-Santa-Maria I., Chastagner P., Perthame E., Delmas C., Toulas C., Moyal-Jonathan-Cohen E., Brou C., Zurzolo C. Patient-Derived Glioblastoma Stem Cells Transfer Mitochondria Through Tunneling Nanotubes in Tumor Organoids. Biochem. J. 2021;478:21–39. doi:10.1042/BCJ20200710.

72. Elliott R., Barnett B. Ultrastructural Observation of Mitochondria in Human Breast Carcinoma Cells. Microsc. Microanal. 2011;7:194–195. doi:10.1017/S143192761100184X.

73. Chang J.-C., Chang H.-S., Wu Y.-C., Cheng W.-L., Lin T.-T., Chang H.-J., Chen S.-T., Liu C.-S. Antitumor Actions of Intratumoral Delivery of Membrane-Fused Mitochondria in a Mouse Model of Triple-Negative Breast Cancers. Onco. Targets. Ther. 2020;13:5241–5255. doi:10.2147/OTT.S238143.

74. Chang J.-C., Chang H.-S., Yeh C.-Y., Chang H.-J., Cheng W.-L., Lin T.-T., Liu C.-S., Chen S.-T. Regulation of Mitochondrial Fusion and Mitophagy by Intra-Tumoral Delivery of Membrane-Fused Mitochondria or Midiv-1 Enhances Sensitivity to Doxorubicin in Triple-Negative Breast Cancer. Biomed. Pharmacother. 2022;153:113484. doi:10.1016/j.biopha.2022.113484.

75. Vaupel P., Multhoff G. Revisiting the Warburg Effect: Historical Dogma Versus Current Understanding. J. Physiol. (Lond). 2021;599:1745–1757. doi:10.1113/JP278810.

76. Drozdov A.S., Nikitin P.I., Rozenberg J.M. Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. Int. J. Mol. Sci. 2021;22. doi:10.3390/ijms222313011.

77. Chartouni A., Mouawad A., Boutros M., Attieh F., Medawar N., Kourie H.R. Mesenchymal Stem Cells: a Trojan Horse to Treat Glioblastoma. Invest. New Drugs. 2023;41:240–250. doi:10.1007/s10637-023-01352-9.

78. Zhang W., Zhou H., Li H., Mou H., Yinwang E., Xue Y., Wang S., Zhang Y., Wang Z., Chen T., Sun H., Wang F., Zhang J., Chai X., Chen S., Li B., Zhang C., Gao J., Ye Z. Cancer Cells Reprogram to Metastatic State Through the Acquisition of Platelet Mitochondria. Cell. Rep. 2023;42:113147. doi:10.1016/j.celrep.2023.113147.

79. Takenaga K., Koshikawa N., Nagase H. Intercellular Transfer of Mitochondrial DNA Carrying Metastasis-Enhancing Pathogenic Mutations from High- to Low-Metastatic Tumor Cells and Stromal Cells Via Extracellular Vesicles. BMC Mol. and Cell. Biol. 2021;22:52. doi:10.1186/s12860-021-00391-5.

80. Harutyunyan T. The Known Unknowns of Mitochondrial Carcinogenesis: de Novo NUMTs and Intercellular Mitochondrial Transfer. Mutagenesis. 2023. doi:10.1093/mutage/gead031.

 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The research was carried out with the financial support of a grant from the Russian Science Foundation (No. 23–14–00220).

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.11.2023. Accepted for publication: 27.12.2023.

 

 

 

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2760050
Today
Yesterday
This week
Last week
This month
Last month
For all time
2362
3035
18434
18409
67793
75709
2760050

Forecast today
2352


Your IP:216.73.216.216