JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 1. P. 47-59

REVIEW

G.E. Roytberg1, S.V. Usychkin1, A.V. Boiko2

Extreme Hypofractionated external-Beam radiotherapy for Prostate Cancer

1. JSC “Medicina”, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. P.A.Herzen Moscow Scientific-Research Oncological Institute, Moscow, Russia

ABSTRACT

Hypofractionation is one of the approaches in the non-classical fractionation of prostate cancer external-beam radiotherapy. The purpose of hypofractionation is not only to make the treatment more comfortable for the patient (less daily visits to the treatment center) and more cost-effective but also to increase the local tumor control as well. High dose per fraction increases a biologically effective dose for prostate adenocarcinoma cells and works as a biological radiosensitizer while isoeffective dose for normal tissues remains unchanged. In 80-90 % of patients with localized prostate cancer treated with extremely hypofractionated radiotherapy (7 to 8 Gy dose per fraction, 5 fractions to the total dose of 35-40 Gy) a permanent biochemical tumor control is achieved. The modern high-precision treatment planning and treatment delivery techniques (IMRT, VMAT) as well as on-line target tracking and image guidance (IGRT) coupled with additional systems of internal prostate immobilization (endorectal balloons and «spacers» inserted between prostate and rectal wall) are prerequisite conditions for extreme hypofractionated radiotherapy. Completed recently multiple studies of phase 2 have demonstrated that extremely hypofractionated prostate radiotherapy did not increase the rate of serious late toxicity if it is performed in the clinics with high level of modern technical equipment Image-Guided Radiotherapy. For this reason it can be used as an alternative to the conventionally fractionated radiotherapy.

Key words: external-beam radiotherapy, extreme fractionation, prostate cancer, hypofractiotion

REFERENCES

  1. Tarinskii V.V., Petrova G.V. Zlokachestvennye novoobrazovaniya v Rossii v 2012 godu (zabolevaemost' i smertnost'). Moscow: FGBU «MNIOI im. P.A. Gertsena» Minzdrava Rossii. 2014. 250 p. (In Russ.).
  2. D’Amico A.V., Whittington R., Malkowicz S.B. et al. Biochemical outcome after radical prostatectomy or external beam radiation therapy for patients with clinically localized prostate carcinoma in the prostate specific antigen era. Cancer. 2002. Vol. 95. No. 2. P. 281-286.
  3. D’Amico A.V., Whittington R., Malkowicz S.B. et al. Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J. Clin. Oncol. 1999. Vol. 17. No. 1. P. 168-172.
  4. D’Amico A.V. Prostate cancer: where we have been. where we are. and where we are going. Semin Radiat. 2013. Vol. 23. No. 3. P. 155-156.
  5. Peeters S.T., Heemsbergen W.D., Koper P.C. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J. Clin. Oncol. 2006. Vol. 24. No. 13. P. 1990-1996.
  6. Pollack A., Zagars G.K., Starkschall G. et al. Prostate cancer radiation dose response: results of the M.D. Anderson phase III randomized trial. Int. J. Radiat. Biol. Phys. 2002. Vol. 53. No. 5. P. 1097-1105.
  7. Zietman A.L., DeSilvio M.L., Slater J.D. et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA. 2005. Vol. 294. No. 10. P. 1233-1239.
  8. Spratt D.E., Pei X., Yamada J. et al. Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer. Int. J. Radiat. Biol. Phys. 2013. Vol. 85. No. 3. P. 686-692.
  9. Dar'yalova S.L., Boiko A.V., Alekseev B.Ya., Grishina Yu.A. Metodika i rezul'taty luchevoi terapii raka predstatel'noi zhelezy. Ross. onkol. zhurnal. 2006. No. 6. P. 9-13. (In Russ.).
  10. Boiko A.V., Chernichenko A.V., Dar'yalova S.L., Meshcheryakova I.A., Ter-Arutyunyants S.A. Netraditsionnoe fraktsionirovanie dozy. V sb. «Materialy V Rossiiskoi onkologicheskoi konferentsii». 2001.
  11. Chernichenko A.V., Boiko A.V., Morozova S.V. et al. Termoradioterapiya raka predstatel'noi zhelezy. Ross. onkol. zhurnal. 2009. No. 3. P. 9-12. (In Russ.).
  12. Miles E.F., Lee W.R. Hypofractionation for prostate cancer: a critical review. Semin. Radiat. Oncol. 2008. Vol. 18. No. 1. P. 41-47.
  13. Brenner D.J., Hall E.J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. 1999. Vol. 43. No. 5. P. 1095-1101.
  14. Vogelius I.R., Bentzen S.M. Meta-analysis of the alpha/beta ratio for prostate cancer in the presence of an overall time factor: bad news. good news. or no news?. Int. J. Radiat. Oncol. Phys. 2013. Vol. 85. No. 1. P. 89-94.
  15. Fowler J.F., Toma-Dasu I., Dasu A. Is the alpha/beta ratio for prostate tumours really low and does it vary with the level of risk at diagnosis? Anticancer Res. 2013. Vol. 33. No. 3. P. 1009-1011.
  16. Tree A.C., Khoo V.S., van As N.J. et al. Is biochemical relapse-free survival after profoundly hypofractionated radiotherapy consistent with current radiobiological models? Clin. (R. Coll. Radiol.). 2014. Vol. 26. No. 4. P. 216-229.
  17. Kupelian P.A., Willoughby T.R., Reddy C.A. et al. Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. Int. J. Radiat. Biol. Phys. 2007. Vol. 68. No. 5. P. 1424-1430.
  18. Yeoh E.E., Botten R.J., Butters J. et al. Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. Int. J. Radiat. Biol. Phys. 2011. Vol. 81. No. 5. P. 1271-1278.
  19. Dearnaley D., Syndikus I., Sumo G. et al. Conventional versus hypofractionated high-dose intensity modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomized controlled trial. Lancet Oncol. 2012. Vol. 13. No. 1. P. 43-54.
  20. Arcangeli G., Saracino B., Gomellini S. et al. A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int. J. Radiat. Biol. Phys. 2010. Vol. 78. No. 1. P. 11-18.
  21. Arcangeli S., Strigari L., Gomellini S. et al. Updated results and patterns of failure in a randomized hypofractionation trial for high-risk prostate cancer. Int. J. Radiat. Biol. Phys. 2012. Vol. 84. No. 5. P. 1172-1178.
  22. Arcangeli G., Fowler J., Gomellini S. et al. Acute and late toxicity in a randomized trial of conventional versus hypofractionated three-dimensional conformal radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 79. No. 4. P. 1013-1021.
  23. Arcangeli S., Scorsetti M., Alongi F. Will SBRT replace conventional radiotherapy in patients with low intermediate risk prostate cancer? A review. Crit Rev Oncol Hematol. 2012. Vol. 84. No. 1. P. 101-108.
  24. Buyyounouski M.K., Price R.A., , Harris E.E. et al. Stereotactic body radiotherapy for primary management of early-stage. low- to intermediate-risk prostate cancer: report of the American Society for Therapeutic Radiology and Oncology Emerging Technology Committee. Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 76. No. 5. P. 1297-1304.
  25. Ishiyama H., Teh B.S., Lo S.S. et al. Stereotactic body radiation therapy for prostate cancer. Future Oncol. 2011. Vol. 7. No. 9. P. 1077-1086.
  26. Fuks Z., Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005. Vol. 8. No. 2. P. 89-91.
  27. Collins C.D., Lloyd-Davies R.W., Swan A.V. Radical external beam radiotherapy for localised carcinoma of the prostate using a hypofractionation technique. Clin. (R. Coll. Radiol.). 1991. Vol. 3. No. 3. P. 127-132.
  28. Martinez A.A., Demanes J., Vargas C. et al. High-dose-rate prostate brachytherapy: an excellent accelerated-hypofractionated treatment for favorable prostate cancer. Amer. J. Clin. 2010. Vol. 33. No. 5. P. 481-488.
  29. King C.R., Lehmann J., Adler J.R. et al. CyberKnife radiotherapy for localized prostate cancer: rationale and technical feasibility. Technol. Cancer Res. Treat. 2003. Vol. 2. No. 1. P. 25-30.
  30. Fuller D.B., Naitoh J., Lee C. et al. Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int. J. Radiat. Biol. Phys. 2008. Vol. 70. No. 5. P. 1588-1597.
  31. King C.R., Brooks J.D., Gill H. et al. Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int. J. Radiat. Biol. Phys. 2009. Vol. 73. No. 4. P. 1043-1048.
  32. King C.R., Brooks J.D., Gill H. et al. Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int. J. Radiat. Biol. Phys. 2012. Vol. 82. No. 2. P. 877-882.
  33. Katz A.J., Santoro M., Diblasio F. et al. Stereotactic body radiotherapy for localized prostate cancer: disease control and quality of life at 6 years. Radiat. 2013. Vol. 8. No. 1. P. 1-8.
  34. King C .R., Freeman D., Kaplan I. et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother. Oncol. 2013. Vol. 109. No. 2. P. 217-221.
  35. Madsen B.L., Hsi R.A., Pham H.T. et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP). 33.5 Gy in five fractions for localized disease: first clinical trial results. Int. J. Radiat. Biol. Phys. 2007. Vol. 67. No. 4. P. 1099-1105.
  36. Friedland J.L., Freeman D.E., Masterson-McGary M.E. et al. Stereotactic body radiotherapy: an emerging treatment approach for localized prostate cancer. Technol. Cancer Res. Treat. 2009. Vol. 8. No. 5. P. 387-392.
  37. Boike T.P., Lotan Y., Cho L.C. et al. Phase I dose-escalation study of stereotactic body radiation therapy for lowand intermediate-risk prostate cancer. J. Clin. Oncol. 2011. Vol. 29. No. 15. P. 2020-2026.
  38. Kang J.K., Cho C.K., Choi C.W. et al. Image-guided stereotactic body radiation therapy for localized prostate cancer. Tumori. 2011. Vol. 97. No. 1. P. 43-48.
  39. McBride S.M., Wong D.S., Dombrowski J.J. et al. Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer. 2012. Vol. 118. No. 15. P. 3681-3690.
  40. Bolzicco G., Favretto M.S., Satariano N. et al. A singlecenter study of 100 consecutive patients with localized prostate cancer treated with stereotactic body radiotherapy. BMC Urol. 2013. Vol. 13. No. 1. P. 1-8.
  41. Chen L.N., Suy S., Uhm S. et al. Stereotactic body radiation therapy (SBRT) for clinically localized prostate cancer: the Georgetown University experience. Radiat. 2013. Vol. 8. No. 1. P. 1-10.
  42. Aluwini S., van Rooij P., Hoogeman M. et al. Stereotactic body radiotherapy with a focal boost to the MRI-visible tumor as monotherapy for low- and intermediate-risk prostate cancer: early results. Radiat. 2013. Vol. 8. No. 1. P. 1-7.
  43. Oliai C., Lanciano R., Sprandio B. et al. Stereotactic body radiation therapy for the primary treatment of localized prostate cancer. J. Radiat. Oncol. 2013. Vol. 2. No. 1. P. 63-70.
  44. Loblaw A., Cheung P., D’Alimonte L. et al. Prostate stereotactic ablative body radiotherapy using a standard linear accelerator: toxicity. biochemical. and pathological outcomes. Radiother. 2013. Vol. 107. No. 2. P. 153-158.
  45. Tree A., Aluwini S., Bryant H. et al. Successful Patient Acceptance of Randomization Within the Pace Study (Prostate Advances in Comparative Evidence). Int. J. Radiat. Oncol. Biol. Phys. 2013. Vol. 87. No. 2. P. S365.
  46. Mohler J.L., Kantoff P.W., Armstrong A.J. et al. Prostate cancer. version 2. 2014. J. Natl. Compr. Canc. Netw. 2014. Vol. 12. No. 5. P. 686-718.
  47. Greco C. Extreme hypofractionated image-guided radiotherapy for prostate cancer. EMJ Oncol. 2013. No. 1. P. 48-55.
  48. Mok G., Benz E., Vallee J.P. et al. Optimization of radiation therapy techniques for prostate cancer with prostate-rectum spacers: a systematic review. Int. J. Radiat. Biol. Phys. 2014. Vol. 90. No. 2. P. 278-288.
  49. Sumila M., Mack A., Schneider U. et al. Long-term intrafractional motion of the prostate using hydrogel spacer during Cyberknife(R) treatment for prostate cancer a case report. Radiat. 2014. Vol. 9. No. 1. P. 1-6.
  50. Chapet O., Udrescu C., Tanguy R. et al. Dosimetric implications of an injection of hyaluronic acid for preserving the rectal wall in prostate stereotactic body radiation therapy. Int. J. Radiat. Biol. Phys. 2014. Vol. 88. No. 2. P. 425-432.
  51. Wei J.T., Dunn R.L., Litwin M.S. et al. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology. 2000. Vol. 56. No. 6. P. 899-905.
  52. Szymanski K.M., Wei J.T., Dunn R.L. et al. Development and validation of an abbreviated version of the expanded prostate cancer index composite instrument for measuring healthrelated quality of life among prostate cancer survivors. Urology. 2010. Vol. 76. No. 5. P. 1245-1250.
  53. King C.R., Collins S., Fuller D. et al. Health-related quality of life after stereotactic body radiation therapy for localized prostate cancer: results from a multi-institutional consortium of prospective trials. Int. J. Radiat. Biol. Phys. 2013. Vol. 87. No. 5. P. 939-945.
  54. Arscott W.T., Chen L.N., Wilson N. et al. Obstructive voiding symptoms following stereotactic body radiation therapy for prostate cancer. Radiat. 2014. Vol. 9. No. 1. P. 163-172.
  55. Woo J.A., Chen L.N., Bhagat A. et al. Clinical characteristics and management of late urinary symptom flare following stereotactic body radiation therapy for prostate cancer. Fronties in Oncol. 2014. Vol. 4. No. 1. P. 1-10.
  56. Chen L.N., Suy S., Wang H. et al. Patient-reported urinary incontinence following stereotactic body radiation therapy (SBRT) for clinically localized prostate cancer. Radiat. 2014. Vol. 9. No. 1. P. 1-9.
  57. Sood S., Ju A.W., Wang H. et al. Rectal endoscopy findings following stereotactic body radiation therapy for clinically localized prostate cancer. Radiat. 2013. Vol. 8. No. 1. P. 1-6.
  58. Kim D.W., Cho L.C., Straka C. et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate cancer. Int. J. Radiat. Biol. Phys. 2014. Vol. 89. No. 3. P. 509-517.
  59. Wiegner E.A., King C.R. Sexual function after stereotactic body radiotherapy for prostate cancer: results of a prospective clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 2010. Vol. 78. No. 2. P. 442-448.

For citation: Roytberg GE, Usychkin SV, Boiko AV. Extreme Hypofractionated External-Beam Radiotherapy for Prostate Cancer. Medical Radiology and Radiation Safety. 2016;61(1):47-59. Russian.

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2763742
Today
Yesterday
This week
Last week
This month
Last month
For all time
4107
2366
22126
18409
71485
75709
2763742

Forecast today
4728


Your IP:216.73.216.9