JOURNAL DESCRIPTION

The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.

Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.

Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.

The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.

Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.

The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.

Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.

The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.

Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 1. P. 5–14

RADIATION BIOLOGY

DOI: 10.12737/article_5c55fb17a02054.31513592

Yu.P. Semochkina1, A.V. Rodina1, E.Yu. Moskaleva1, E.S. Zhorova2, V.P. Saprykin2, S.S. Arzumanov1, V.V. Safronov3

Malignant Transformation of Mesenchymal Stem Cells from Different Mouse Tissues after Mixed Gamma-Neutron Irradiation in vitro

1. NRC Kurchatov Institute, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;
2. A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia;
3. Research Center “Space Materials Science”, Kaluga, Russia

Yu.P. Semochkina – Junior Researcher;
A.V. Rodina – Leading Researcher, PhD Biol.;
E.Yu. Moskaleva – Leading Researcher, Prof. Dr. Sci. Biol., Member of ERRS;
E.S. Zhorova – Leading Researcher, PhD Biol.;
V.P. Saprykin – Leading Researcher, Dr. Sci. Med.;
S.S. Arzumanov – Deputy Head of Department, PhD Phys.-Math.;
V.V. Safronov – Senior Researcher, PhD Phys.-Math.

Abstract

Purpose: To study the possibility of malignant transformation of control and irradiated mesenchymal stromal stem cells (MSC) from the bone marrow (BM) and brain (BR) and from the adipose tissue (AT) of mice and some cytokines secretion after mixed γ,neutron (γ, n) irradiation and γ-irradiation.

Material and methods: MSCs were isolated and cultured according to generally accepted protocols. γ, n-irradiation was carried out by a collimated beam of neutrons and gamma rays at a special station of the nuclear reactor IR-8. MSCs were irradiated at the 29th passage at doses of 0.05; 0.5 and 2 Gy, were cultured for 10 passages and transplanted subcutaneously 1×106 cells to C57BL/6 syngeneic mice. MSCs AT were irradiated at the facility GUT-200M (60Co) at doses 1–6 Gy. The level of cytokines in the culture medium of MSC was measured by an ELISA.

Results: A decrease in RBE was observed after radiation dose increasing from 0.5 to 4.0 Gy. The maximum of RBE for all MSCs, equal to 5.5, was observed at a dose of 0.5 Gy. After the dose increasing to 2 Gy an average RBE decreased to 2.5, and at dose 4.0 Gy RBE it was 2.0. Tumors were detected after 5 months after transplantation into syngeneic mice of MSC BM irradiated at doses of 0.05; 0.5 and 2 Gy. After transplantation of control MSCs BM and of control and irradiated MSCs BR and MSC AT, no tumors were detected. After subcutaneous injection of γ-irradiated at doses of 0.1; 1 and 6 Gy MSC AT, unlike MSCs BM, no tumors were detected. Histological examination of tumors revealed signs of a low-grade fibrosarcoma with active proliferation and a high degree of malignancy. Tumors contained inclusions from the derivatives of several tissues of mesenchymal origin – muscular, fatty, cartilaginous and bone. In the case of a tumor that developed after transplantation of MSCs BM exposed to γ,n-radiation at a dose of 0.05 Gy, the contact metastasis was detected in the shoulder with the penetration of tumor cells between the muscle fibers. From the tumors, the mouse fibrosarcoma cell lines were obtained. The highest level of cytokines VEGF, HGF and IL6 was found in the culture medium of MSC AT. The level of TGFβ secretion was practically the same in all studied MSCs. After γ,n-irradiation an increase of VEGF secretion in MSC BM, a decrease of IL6 secretion in MSC BM and MSC BR, and an increase in its secretion in MSC AT were detected.

Conclusions: The obtained results testify the high sensitivity of MSC BM to malignant transformation after ionizing irradiation and the much higher resistance of mouse MSC BR and MSC AT. The mechanisms of these differences are yet not known. The highest level of cytokines VEGF, HGF and IL6 was found in the culture medium of MSC AT. After the action of γ,n-radiation, as well as after the action of γ-radiation, the secretion profile of the investigated cytokines was changed, depending both on the dose and on the type of radiation.

Key words: mesenchymal stem cells, malignant transformation, carcinogenesis, γ-irradiation, γ,n-irradiation, neutrons, bone marrow, brain, adipose tissue, cytokines, mice

REFERENCES

1. Zacharatou Jarlskog C, Paganetti H. Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age. Int J Radiat Oncol Biol Phys. 2008;72(1):228-35. DOI: 10.1016/j.ijrobp.2008.04.069.
2. Musabaeva LI, Golovkov VМ. Fast neutron therapy for cancer patients. Siberian Journal of Oncology. 2015;2:88-94. (Russian.)
3. Taddei PJ, Mirkovic D, Fontenot JD, Giebeler A, Zheng Y, Kornguth D, Mohan R, Newhauser WD. Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams. Phys Med Biol. 2009 Apr 21;54(8):2259-75. DOI: 10.1088/0031-9155/54/8/001.
4. Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer. 2011;11(6):438-48. DOI: 10.1038/nrc3069.
5. Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. ICRP Publication 131. Ann. ICRP 44(3/4): 7-357. DOI: 10.1177/0146645315595585.
6. Moskaleva EYu, Semochkina YuP, Rodina AV, Chukalova AA, Posypanova GA. Effects of γ-radiation on mesenchymal stem cells from mouse bone marrow and brain and their ability to induce tumors. Radiat Biol Radioecol. 2017;57(3):245-56. (Russian.)
7. Moskaleva EYu, Zhorova ES, Semochkina YuP, et al. Characteristics of tumors that have developed in mice injected with syngenic irradiated mesenchymal stem cells of bone marrow. Cell and Tissue Biology, 2017;11(5):381-8.
8. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies // Tissue Eng. 2001;7(2):211-28. DOI:10.1089/107632701300062859.
9. Arzumanov SS, Safronov VV, Strepetov AN. Determination of the absorbed dose in a biological sample after mixed gamma-neutron irradiation. J. Techn. Physics. 2018;88(10):1581-4.
10. Maleta YuS, Tarasov VV. Non-parametric methods of statistical analysis in biology and medicine. Moscow. MSU. 1982. (Russian.)
11. Wolf C, Lafuma J, Masse R, Morin M, Kellerer AM. Neutron RBE for induction of tumors with high lethality in Sprague-Dawley rats. Radiat Res. 2000;154(4):412-20.
12. Broerse JJ, van Bekkum DW, Zoetelief J, Zurcher C. Relative biological effectiveness for neutron carcinogenesis in monkeys and rats. Radiat Res. 1991;128(1 Suppl):S128-35. 13. Kamiya K, Inoh A, Fujii Y, Kanda K, Kobayashi T, Yokoro K. High mammary carcinogenicity of neutron irradiation in rats and its promotion by prolactin. Jpn J Cancer Res. 1985;76(6):449-56.

For citation: Semochkina YuP, Rodina AV, Moskaleva EYu, Zhorova ES, Saprykin VP, Arzumanov SS, Safronov VV. Malignant Transformation of Mesenchymal Stem Cells from Different Mouse Tissues after Mixed Gamma-Neutron Irradiation in vitro. Medical Radiology and Radiation Safety. 2019;64(1):5-14. (Russian).

DOI: 10.12737/article_5c55fb17a02054.31513592

PDF (RUS) Full-text article (in Russian)

Contact Information

 

46, Zhivopisnaya st., 123098, Moscow, Russia Phone: +7 (499) 190-95-51. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Journal location

Attendance

2768096
Today
Yesterday
This week
Last week
This month
Last month
For all time
1042
2948
25438
25438
75839
75709
2768096

Forecast today
2088


Your IP:216.73.216.66