JOURNAL DESCRIPTION
The Medical Radiology and Radiation Safety journal ISSN 1024-6177 was founded in January 1956 (before December 30, 1993 it was entitled Medical Radiology, ISSN 0025-8334). In 2018, the journal received Online ISSN: 2618-9615 and was registered as an electronic online publication in Roskomnadzor on March 29, 2018. It publishes original research articles which cover questions of radiobiology, radiation medicine, radiation safety, radiation therapy, nuclear medicine and scientific reviews. In general the journal has more than 30 headings and it is of interest for specialists working in thefields of medicine¸ radiation biology, epidemiology, medical physics and technology. Since July 01, 2008 the journal has been published by State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency. The founder from 1956 to the present time is the Ministry of Health of the Russian Federation, and from 2008 to the present time is the Federal Medical Biological Agency.
Members of the editorial board are scientists specializing in the field of radiation biology and medicine, radiation protection, radiation epidemiology, radiation oncology, radiation diagnostics and therapy, nuclear medicine and medical physics. The editorial board consists of academicians (members of the Russian Academy of Science (RAS)), the full member of Academy of Medical Sciences of the Republic of Armenia, corresponding members of the RAS, Doctors of Medicine, professor, candidates and doctors of biological, physical mathematics and engineering sciences. The editorial board is constantly replenished by experts who work in the CIS and foreign countries.
Six issues of the journal are published per year, the volume is 13.5 conventional printed sheets, 88 printer’s sheets, 1.000 copies. The journal has an identical full-text electronic version, which, simultaneously with the printed version and color drawings, is posted on the sites of the Scientific Electronic Library (SEL) and the journal's website. The journal is distributed through the Rospechat Agency under the contract № 7407 of June 16, 2006, through individual buyers and commercial structures. The publication of articles is free.
The journal is included in the List of Russian Reviewed Scientific Journals of the Higher Attestation Commission. Since 2008 the journal has been available on the Internet and indexed in the RISC database which is placed on Web of Science. Since February 2nd, 2018, the journal "Medical Radiology and Radiation Safety" has been indexed in the SCOPUS abstract and citation database.
Brief electronic versions of the Journal have been publicly available since 2005 on the website of the Medical Radiology and Radiation Safety Journal: http://www.medradiol.ru. Since 2011, all issues of the journal as a whole are publicly available, and since 2016 - full-text versions of scientific articles. Since 2005, subscribers can purchase full versions of other articles of any issue only through the National Electronic Library. The editor of the Medical Radiology and Radiation Safety Journal in accordance with the National Electronic Library agreement has been providing the Library with all its production since 2005 until now.
The main working language of the journal is Russian, an additional language is English, which is used to write titles of articles, information about authors, annotations, key words, a list of literature.
Since 2017 the journal Medical Radiology and Radiation Safety has switched to digital identification of publications, assigning to each article the identifier of the digital object (DOI), which greatly accelerated the search for the location of the article on the Internet. In future it is planned to publish the English-language version of the journal Medical Radiology and Radiation Safety for its development. In order to obtain information about the publication activity of the journal in March 2015, a counter of readers' references to the materials posted on the site from 2005 to the present which is placed on the journal's website. During 2015 - 2016 years on average there were no more than 100-170 handlings per day. Publication of a number of articles, as well as electronic versions of profile monographs and collections in the public domain, dramatically increased the number of handlings to the journal's website to 500 - 800 per day, and the total number of visits to the site at the end of 2017 was more than 230.000.
The two-year impact factor of RISC, according to data for 2017, was 0.439, taking into account citation from all sources - 0.570, and the five-year impact factor of RISC - 0.352.
Medical Radiology and Radiation Safety. 2019. Vol. 64. No. 4. P. 64–75
DOI: 10.12737/1024-6177-2019-64-4-64-75
O.K. Kurpeshev1, J. Van der Zee2, M. Cavagnaro3
Hyperthermia for Deep Seated Tumours – Possibilities of Heating with Capacitive Devices
1. Siberian Scientific Research Institute of Hyperthermia, Novosibirsk region, Iskitim-5, Russia;
2. Erasmus Medical Centre, University Medical Center Rotterdam, Rotterdam, Netherlands;
3. Sapienza University, Rome, Italy
O.K. Kurpeshev – PhD, MD, consultant;
J. Van der Zee – PhD, MD, member of European Society for Hyperthermic Oncology (ESHO);
M. Cavagnaro – Prof., PhD, Member of the Societies of the Institute of Electrical and Electronics Engineers (IEEE), the European Society for Hyperthermic Oncology (ESHO) and the European Association of BioElectromagnetics (EBEA)
Abstract
The review examines the general principles of capacitive electromagnetic hyperthermia (EMHT), the distribution of electromagnetic energy in various experimental models and in patients’ tumors, the design features of applicators from various capacitive hyperthermic systems and their role in achieving hyperthermic mode in tumors of deep localization. In classical capacitive EMHT, the main obstacle in achieving the required temperature in such tumors is overheating of the subcutaneous fatty tissue under the electrodes. For some capacitive hyperthermic systems, the heating of adipose tissues is enhanced due to the fact that the applicator design does not conform to certain technical requirements. In capacitive EMHT at frequencies of 8–13.56 MHz, obtaining the minimum hyperthermic mode is possible with output powers of 500–800 W, maximum – 1000–1200 W and above.
The results of the use of various hyperthermic capacitive systems in patients with malignant tumors of internal organs are analyzed.
Key words: radiation therapy, chemotherapy, thermoradiotherapy, thermochemotherapy, thermochemoradiation therapy, electromagnetic fields, hyperthermia, capacitive devices
REFERENCES
- Berdov BA, Kurpeshev OK, Mardynsky YuS. Influence of hyperthermia and hyperglycemia on the efficacy of radiotherapy for cancer patients. Russian Oncol J. 1996;(1):12-6. (Russian).
- Pankratov VA, Andreev VG, Rozhnov VA, et al. Simultaneous use of chemo- and radiotherapy with independent conservative and combined treatment of patients with locally advanced cancer of the larynx and the laryngopharynx. Siberian Oncol J. 2007;(1):18-22. (Russian).
- Van der Zee J, Vujaskovic Z, Kondo M, Sugahara T. Part I. Clinical Hyperthermia. The Kadota Fund International Forum 2004 - Clinical group consensus. Int J Hyperterm. 2008;24(2):111-22.
- Westermann A, Mella O, Van der Zee J, et al. Long-term survival data of triple modality treatment of stage IIB-III-IVA cervical cancer with the combination of radiotherapy, chemotherapy and hyperthermia – an update. Int J Hyperterm. 2012;28(6):549-53. DOI: 10.3109/02656736.2012.673047.
- Kurpeshev OK, Mardinsky YuS, Maksimov SA. Combined treatment of patients with oral cancer using the “conditionally-dynamic” mode of fractionation of radiation therapy and locoregional hyperthermia. Siberian Medical Review. 2011;67(1):80-4. (Russian).
- Ohguri T. Current Status of Clinical Evidence for Electromagnetic Hyperthermia on Prospective Trials. Thermal Med. 2015;31(2):5-12.
- Van der Zee J, Van Rhoon GC. Hyperthermia with radiotherapy and with systemic therapies. In.: Breast Cancer: Innovations in Research and Management (Eds: U. Veronesi A. Goldhirsch P. Veronesi OD. Gentilini MCL). Springer Int. Publ. 2017:855-62. DOI: 10.1007/978-3-319-48848-6_75.
- Kurpeshev OK, van der Zee J. Analysis of results of randomized studies on hyperthermia in Oncology. Medical Radiology and Radiation Safety. 2018; 63(2):52-67. (Russian). DOI: 10.12737/article_5b179d60437d54.24079640.
- Konoplyannikov AG, Dedenkov AN, Kurpeshev OK, et al. Local hyperthermia in radiation therapy of malignant neoplasms. Scientific review. Ed. A.F. Tsyb. Series overview information in medicine and health. Moscow: The Medicine. Oncology. 1983. 72 p. (Russian).
- Kurpeshev OK. Patterns of radiosensitizing and damaging effects of hyperthermia on normal and tumor tissues (experimental clinical study): – Author’s abstract. diss. PhD Med. Obninsk, 1989. 35 p. (Russian).
- Kurpeshev OK. Possibilities and prospects for the use of hyperthermia in medicine. Clinical Medicine. 1996. (1):14-6. (Russian).
- Pankratov VA, Andreev VG, Kurpeshev OK, et al. Application of thermochemical treatment in patients with locally advanced cancer of the larynx and hypopharynx. Russian Oncol J. 2006;(4):20-3. (Russian).
- Wainson AA, Mescherikova VV, Lavrova Yu E, Mazokhin VN. The efficacy of simultaneous and sequential irradiation and hyperthermic treatment of tumor cells in vitro and transplantable tumors in vivo. Radiat Biol Radioecol. 2012;52(5):510-6. (Russian).
- Wainson AA, Mescherikova VV, Tkachev SI. Radio-thermomodifying effect of Cisplatin, Gemzar and Paclitaxel on tumor cells in vitro. Medical Radiology and Radiation Safety. 2016; 61(2):25-9. Russian
- Kurpeshev OK, Tsyb AF, Mardynsky YuS, Berdov BA. Mechanisms of development and ways of overcoming chemo-resistance of tumors. Part 3. Possible ways to overcome the chemoresistance of tumors. Russian Oncol J. 2003;(2):50-2. (Russian).
- Toraya-Brown S, Sheen MR, Zhang P, et al. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors. Nanomedicine. 2014;10(6):1273-85. DOI: 10.1016/j.nano.2014.01.011.
- Van der Heijden AG, Dewhirst MW. Effects of hyperthermia in neutralizing mechanisms of drug resistance in non-muscleinvasive bladder cancer. Int J Hyperterm. 2016;32(4):434-45. DOI: 10.3109/02656736.2016.1155761
- Franckena M, Fatehi D, de Bruijne M, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 2009; 45:1969-78. DOI: 10.1016/j.ejca.2009.03.009.
- Dewhirst MW, Sim DA, Sapareto S, Connor WG. Importance of minimum tumor temperature in determining early and long-term responses of spontaneous canine and feline tumors to heat and radiation. Cancer Res. 1984;44(1):43-50.
- Sherar M, Liu FF, Pintilie M, et al. Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys. 1997;39(2):371-80.
- Jones EL, Oleson JR, Prosnitz LR, et al. Randomized trial of hyperthermia and radiation for superficial tumors. J Clin Oncol. 2005; 23:3079-85.
- Hand JW, Machin D, Vernon CC, Whaley JB. Analysis of thermal parameters obtained during phase III trials of hyperthermia as an adjunct to radiotherapy in the treatment of breast carcinoma. Int J Hyperterm. 1997;13(4):343-64.
- Xia T, Sun Q, Shi X, et al. Relationship between thermal parameters and tumor response in hyperthermia combined with radiation therapy. Int J Clin Oncol. 2001; 6(3):138-42.
- Canters RAM, Wust P, Bakker JF, Van Rhoon G. A literature survey on indicators for characterization and optimization of SAR distributions in deep hyperthermia, a plea for standardization. Int J Hyperterm. 2009;25:593-608.
- Bruggmoser G, Bauchowitz S, Canters R, et al. Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia. Strahlenther Onkol. 2012;188(Suppl. 2):198-211. DOI: 10.1007/s00066-012-0176-2.
- Abe M, Hiraoka M, Takahashi M.I, et al. Multi-Institutional Studies on Hyperthermia Using an 8-MHz Radiofrequency Capacitive Heating Device (Thermotron RF-8) in Combination With Radiation for Cancer Therapy. Cancer 1986;58(8):1589-95.
- Sidi J, Jasmin C, Convert G, et al. Shortwave regional hyperthermia of the pelvis. Biomed Thermol. 1982;107:739-44.
- Van Rhoon GC, Sowinski MJ, Van Den Berg et al. A ring capacitor applicator in hyperthermia: energy distributions in a fat-muscle layered model for different ring electrode configurations. Int J Radiat Oncol BioL Phys. 1990;18:77-85.
- Kim KS, Hernandez D, Lee SY. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation. BioMed Eng OnLine. 2015;14:95. DOI: 10.1186/s12938-015-0090-9.
- Brezovich I. A. Heating of subcutaneous fat in localized current field hyperthermia with external electrodes. Med Phys. 1979;6(4):352-8.
- Brezovich I.A, Lilly M.B, Durant J.R, et al. A practical system for clinical hyperthermia radiofrequency. Int J Radiat Oncol Biol Phys.1981;7(3):423-30.
- Yanagawa S, Sone Y, Doi H, Yamamoto G. A new procedure for the prevention of surface overheating in deep hyperthermia using RF capacitive heating equipment. Jpn J Hyperterm Oncol. 1985;1:187-91.
- Van Rhoon GC, Van der Zee J, Broekmeyer-Reurink MP, et al. Radiofrequency capacitive heating of deep-seated tumours using pre-cooling of the subcutaneous tissues: results on thermometry in Dutch patients. Int J Hyperterm. 1992; 8:843-54.
- Kato H, Hiraoka M, Nakajima T, Ishida T. Deep heating characteristics of an RF capacitive heating device. Int J Hyperterm. 1985;1:15-28.
- Rhee JG, Lee CKK, Osborn J, et al. Precooling prevents overheating of subcutaneous fat in the use of RF capacitive heating. Int J Radiat Oncol Biol Phis. 1991;20(5):1009-15. DOI: 10.1016/0360-3016(91)90198-D.
- Kumagae K, Saito К. Air Gap Filler Material for Hot Spot Reduction in the Capacitive Heating Device. Thermal Med. 2016;32(2):5-11.
- Tanaka H, Kato H, Nishida T, et al. Physical basis of RF hyperthermia for cancer therapy (2). Measurement of distribution of absorbed power from radiofrequency exposure in agar phantom. J Radiat Res. 1981;22:101-8.
- Lee CКК, Song CW, Rhee JG, Levitt SH. Clinical Experience with Thermotron RF-8 Capacitive Heating for Bulky Tumors: University of minnesota Experience. Radiol Clin of North America. 1989;27(3):543-58.
- Chen C-C, Kiang J-F. Efficacy of Magnetic and Capacitive Hyperthermia on Hepatocellular Carcinoma. Progress Electromagn Res. 2018;64:181-92.
- Frija E, Cavagnaro M. А comparison between radiative and capacitive systems in deep hyperthermia treatments. 31st An Meet of the Eur Soc for Hyperterm Oncol. Greece, Athens, 21-23 June 2017:62-3. OP-07.
- Beck M, Chrozon B, Lim A, et al. SAR profiles generated with a capacitive hyperthermia system in a porcine phantom. Strahlenther Onkol. 2018;194:493-4.
- Kok HP, Navarro F, Strigari L, et al. Locoregional hyperthermia of deep-seated tumors applied with capacitive and radiative systems: a simulation study. Int J Hyperterm. 2018. DOI: 10.1080/02656736.2018.1448119
- Lopatin VF. Method of local UHF hyperthermia. Med Fizika. 2011;(4):85-95. (Russian).
- Seong J, Lee HS, Han KH, et al. Combined treatment of radiotherapy and hyperthermia for unresectable hepatocellular carcinoma. Yonsei Medical J. 1994;35(3):252-9.
- Kim SW, Yea JW, Kim· JH. et al. Selecting patients for hyperthermia combined with preoperative chemoradiotherapy for locally advanced rectal cancer. Int J Clin Oncol. 2018;23(2);287-97. DOI: 10.1007/s10147-017-1213-z.
- Lee S-Y, Kim J-H, Han Y-H, Cho D-H. The effect of modulated electro-hyperthermia on temperature and blood flow in human cervical carcinoma. Int J Hyperterm. 2018. DOI: 10.1080/02656736.2018.1423709
- Rusakov SV, Sas A, Sas O, Sas N. A method for the treatment of solid malignant tumors by the method of Oncothermia (medical technology). Moscow. 2011:96 p. (Russian).
- Noh JM, Kim HY, Park HC, et al. In vivo verification of regional hyperthermia in the liver. Radiat Oncol J. 2014;32(4):256-61.
- Yu JI, Park HC, Choi DH. Prospective phase II trial of regional hyperthermia and whole liver irradiation for numerous chemorefractory liver metastases from colorectal cancer. Radiat Oncol J. 2016;34(1):34-44. DOI: 10.3857/roj.2016.34.1.34.
- Park JS, Park HC, Choi DH, et al. Prognostic and predictive value of liver volume in colorectal cancer patients with unresectable liver metastases. Radiat Oncol J. 2014;32(2):77-83.
- Yeo SG, Kim DY, Kim TH, et al. Whole-liver radiotherapy for end-stage colorectal cancer patients with massive liver metastases and advanced hepatic dysfunction. Radiat Oncol. 2010;5:97.
- Borgelt BB, Gelber R, Brady LW, Griffin T, Hendrickson FR. The palliation of hepatic metastases: results of the Radiation Therapy Oncology Group pilot study. Int J Radiat Oncol Biol Phys. 1981;7(5):587-91.
- Ohguri T, Imada H, Yahara K, et al. Radiotherapy with 8-MHz radiofrequency-capacitive regional hyperthermia for stage III non–small-cell lung cancer: the radiofrequency-output power correlates with the intraesophageal temperature and clinical outcomes. Int J Radiat Oncol Biol Phys. 2009;73(1):128-35. DOI: 10.1016/j.ijrobp.2008.03.059.
- Harima Y, Nagata K, Harima K, et al. A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperterm. 2001;17(2):97-105. DOI: 10.1080/02656730010001333.
- Harima Y, Ohguri T, Imada H, et al. A multicentre randomised clinical trial of chemoradiotherapy plus hyperthermia versus chemoradiotherapy alone in patients with locally advanced cervical cancer. Int J Hyperterm. 2016;32(7):801-8.
- Gordeev SS. Master class on the use of local hyperthermia in patients with rectal cancer in Krasnodar. Onkol Coloproctology J. 2013; 3(2):9-10. (Russian).
- Startseva JA, Choynzonov ET. Local hyperthermia in the combined treatment of patients with malignant neoplasms. Russian Cancer J. 2015;(4):47-8. (Russian). http://www.studmedlib.ru/ru/doc/1028-99844-SCN0030.html
- Hiraoka M, Jo S, Akuta K. Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry. Cancer. 1987; (60):121-7.
- Hiraoka M, Jo S, Akuta K, et al. Radiofrequency capacitive hyperthermia for deep-seated tumors II. Effects of thermoradiotherapy. Cancer. 1987;60:128-35.
- Vasanthan A, Mitsumori M, Park JH, et al. Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the international atomic energy agency. Int J Radiat Oncol Biol Phys. 2005;61(1):145-53.
- Konishi F, Furuta K, Kanazawa K, et al. The effect of hyperthermia in the preoperative combined treatment of radiation, hyperthermia and chemotherapy for rectal carcinoma. Jpn J Gastroenterol Surg. 1994;(27):789-796.
- Yoshida M, Shioura H, Tomi M, et al. Multimodal combination therapy including hyperthermia for inoperable pancreatic cancer. Proc 7th Int Cong Hypertherm Oncol. Rome. 1996;2:38-9.
- Nagata Y, Hiraoka M, Akuta K, et al. Radiofrequency thermotherapy for malignant liver tumors. Cancer. 1990; 65(8):1730-6.
- Nagata Y, Hiraoka M, Nishimura Y, et al. Clinical results of radiofrequency hyperthermia for malignant liver tumors. Int J Radiat Oncol Biol Phys. 1997;38(2):359-5.
- Hamazoe R, Maeta M, Murakami A, et al. Heating efficiency of radiofrequency capacitive hyperthermia for treatment of deep-seated tumors in the peritoneal cavity. J Surg Oncol.1991;48:176-9.
- Nakajima K, Hisazumi H, Yamamoto H, et al. A study of regional temperature rise in bladder cancer patients during RF-hyperthermia. Jpn J Hyperterm Oncol. 1986(2):43-8.
- Nakajima K, Hisazumi H. Studies of temperature rise in subcutaneous fat tissue during RF-hyperthermia. Jpn J Hyperterm Oncol. 1987;(3):87-91.
- Kubota Y, Sakai N, Watai K, et al. Hyperthermia by regional capacitive heating. In: Hyperthermic oncology. 1988, Vol. 2. Sugahara T, Saito M. (Eds.). Taylor & Francis, London, 1989, 605-8.
- Masunaga S-I, Hiraoka M, Akuta K. Non-randomized trials of thermoradiotherapy versus radiotherapy for preoperative treatment of invasive urinary bladder cancer. J Jpn Soc Ther Radiol Oncol. 1990;2:313-20.
- Lee CK, Song CW, Rhee JG, et al. Clinical experience using 8 MHz radiofrequency capacitive hyperthermia in combination with radiotherapy: results of a phase I/II study. Int J Radiat Oncol Biol Phys. 1995;32(3):733-45. DOI: 10.1016/0360-3016(94)00608-N.
For citation: Kurpeshev OK, Van der Zee J, Cavagnaro M. Hyperthermia for Deep Seated Tumours – Possibilities of Heating with Capacitive Devices. Medical Radiology and Radiation Safety. 2019;64(4):64–75. (English and Russian).
DOI: 10.12737/1024-6177-2019-64-4-64-75
PDF (RUS) Full-text article (in Russian)