Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 1. P. 5-11

DOI: 10.12737/25028  

Transplantation of Autologous Cells of Stromal Vascular Fraction of Adipose Tissue in Severe Local Radiation Injuries of Skin Caused by X-rays

V.G. Lebedev, T.A. Nasonova, Yu.B. Deshevoy, A.V. Lyrschikova, O.A. Dobrynina,
A.S. Samoylov, A.Yu. Bushmanov, B.B. Moroz

A.I. Burnasyan Federal Medical Biophysical Center of FMBA, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

V.G. Lebedev – leading researcher, PhD in Biological Sciences; T.A. Nasonova – leading researcher, PhD in Medical Sciences; Yu.B. Deshevoy – leading researcher, PhD in Medical Sciences; A.V. Lyrschikova – leading researcher, PhD in Biological Sciences; O.A. Dobrynina – junior research fellow; A.S. Samoylov – General Director SRC-FMBC, MD; A.Yu. Bushmanov – First Deputy General Director, MD, Professor; B.B. Moroz – Head of Lab., Academician of RAS, MD.


Purpose: To investigate the effectiveness of autologous cells of stromal vascular fraction of adipose tissue in severe local radiation skin injuries after the exposure of rats to X-rays.

Material and methods: Experiments were performed on Wistar rats, weighing 200–230 g. Rats were exposed locally in iliolumbar region using X-ray machine LNC-268 (RAP 100-10) at a dose of 110 Gy (30 kV tube voltage, current 6.1 mA, thick Al filter 0.1 mm), dose rate: 17.34 Gy/min. Area of the irradiation field was 8.2–8.5 cm2. Transplantation of autologous cells of stromal vascular fraction (SVFC) of adipose tissue was carried out on 21st or 35th days after irradiation. SVFC isolation was performed by means of enzymatic treatment of adipose tissue. SVFC suspension was administered subcutaneously at a dose of 1×106 cells per injection around the radiation ulcers.The severity of radiation damage to the skin and the effects of cellular therapy were evaluated in the dynamics of clinical manifestations, with the help of plane geometry and pathomorphometry.

Results: It was found that by the 17–25th day after irradiation radiation ulcers were formedon rat skin. In the control group of animalsulcers persisted throughout the observation period of more than 3 months. The area of ulcers was 1,87 ± 0,35 cm2 and 1.52 ± 0.24 cm2 at 83th and 90th days after irradiation, respectively. In animals of the experimental group, with autologous stromal vascular fraction of adipose tissue, was significant decrease in ulceration the area in comparison to control animals. In 80 % of the rats treated with SVFC on 21st day after exposure, to the 90th day after irradiation complete healing of ulcers occurred with the formation of atrophic scar at the site of radiation injuries. These clinical observations and planimetric were correlated with the results of histomorphometry.

Conclusion: Transplantation autologous SVFC of adipose tissue contributes to accelerate the healing of radiation ulcers after local x-ray exposure in the experiment, indicating that the prospects of using adipose tissue cell products for the treatment of severe local radiation injuries.

Key words: stromal vascular fraction, adipose tissue, cell technology, local radiation damage, multipotent mesenchymal stromal cells, radiation skin ulcers


  1. Radiacionnaja medicina. Rukovodstvo dlja vrachej-issledovatelej i organizatorov zdravoohranenija. In Il’in L.A. (ed.). Moscow: IzdAT. 2001. Vol. 2. 432 p. (In Russ.).
  2. Bushmanov A.Ju., Nadezhina N.M., Nugis V.Ju., Galstjan I.A. Mestnye luchevye porazhenija kozhi cheloveka: vozmozhnosti biologicheskoj indikacii dozy (analiticheskij obzor). Med. radiol. i radiac. bezopasnost’. 2005. Vol. 50. No. 1. P. 37–47. (In Russ.).
  3. Moroz B.B., Onishhenko N.A., Lebedev V.G. et al. Vlijanie mul’tipotentnyh mezenhimal’nyh stromal’nyh kletok kostnogo mozga na techenie mestnyh luchevyh porazhenij u krys posle lokal’nogo β-obluchenija. Radiacionnaja biologija. Radiojekologija. 2009. Vol. 49. No. 6. P. 688–693. (In Russ.).
  4. Kotenko K.V., Moroz B.B., Deshevoj Ju.B. et al. Singennye mul’tipotentnye stvolovye kletki v terapii dlitel’no nezazhivajushhih luchevyh jazv kozhi v jeksperimente. Med. radiol. i radiac. bezopasnost’. 2015. Vol. 60. No. 2. P. 5–8. (In Russ.).
  5. Akito S., Akino K., Hiruno A. et al. Proposed regeneration therapy for cutaneous radiation injuries. Acta med. Nagasak. 2006. Vol. 51. No. 4. P. 50–55.
  6. Huang L., Burd A. An update review of stem cell applications in burns and wound care. Indian J. Plast.Surg. 2012. Vol. 45. No. 2. P. 229–236.
  7. Gentile P., Orlandi A., Scioli M.G. et al. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem. Cells Transl. Med. 2012. Vol. 1. No. 3. P. 230–236.
  8. Gimble J.M., Bunnell B.A., Frazier T. et al. Adipose-derived stromal/stem cells. A primer. Organogenesis. 2013. Vol. 9. No. 1. P. 3–10.
  9. Nie C., Yang D., Xu J. et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011. Vol. 20. P. 205–216.
  10. Amos P.J., Kapur S.K., Stapor P.C. et al. Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng. Part. A. 2010. Vol. 16. P. 1595–1606.
  11. Gentile P., Orlandi A., Scioli M.G. et al. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem. Cells Transl. Med. 2012. Vol. 1. No. 3. P. 230–236.
  12. Zuk P., Zhu M., Muzuno H. et al. Multilineage cells from human adipose tissue implication for cell-based therapeutics. Tissue Eng. 2001. Vol. 7. No. 2. P. 211–218.
  13. Yoshimura K., Suga H., Eto H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen. Med. 2009. No. 4. P. 265–273.
  14. Lendeckel S., Jodicke A., Christophis P. et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: Case report. J. Craniomaxillofac Surg. 2004. Vol. 32. No. 6. P. 370–373.
  15. Fang B., Song Y., Lin Q. et al. Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr. Transplant. 2007. Vol. 11. No. 7. P. 814–817.
  16. Yoshimura K., Sato K., Aoi N. et al. Cell-assisted lipotransfer for facial lipoatrophy: Efficacy of clinical use of adiposederived stem cells. Dermatol. Surg. 2008. Vol. 34. No. 5. P. 1178–1185.
  17. Sultan S.M., Stern C.S., Allen R.J.Jr. et al. Human fat grafting alleviates radiation skin damage in a murine model. Plast. Reconstr. Surg. 2011. Vol. 128. P. 363–372.
  18. Forcheron F., Agay D., Scherthan H. et al. Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome. PLoS One. 2012. Vol. 7. No. e31694. P. 1–9.
  19. Akita S., Yoshimoto H., Ohtsuru A. et al. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries. Radiat. Protect. Dosimetry. 2012. Vol. 151. No. 4. P. 656–660.
  20. Kotenko K.V., Moroz B.B., Nasonova T.A. et al. Eksperimental’naja model’ tjazhelyh mestnyh luchevyh porazhenij kozhi posle dejstvija rentgenovskogo izluchenija. Pat. fiziol. i jeksperim. terapija. 2013. No. 4. P. 121–123. (In Russ.).
  21. Afrikanova L.A. Ostraja luchevaja travma kozhi. Moscow: Medicina. 1975. 192 p. (In Russ.).
  22. Osanov D.P. Dozimetrija i radiacionnaja biofizika kozhi. Moscow: Jenergoatomizdat. 1983. 47 p. (In Russ.)
  23. Huang S.P., Huang C.H., Shyu J.F. et al. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J. Biomed. Sci. 2013. Vol. 20. P. 51–60.
  24. Lapidot T. Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/ CXCR4 interactions. Ann. N.Y. Acad. Sci. 2001. Vol. 938. P. 83–95.
  25. Son B.-R., Marquez-Curtis L.A., Kucia M. et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by SDF-1−CXCR4 and HGF−c-met axes and involves matrix metalloproteinases. Stem Cells. 2006. Vol. 24. No. 5. P. 1254–1264.
  26. Ries C., Egea V., Karow M. et al. MMP-2, MT1-MMP and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. 2007. Vol. 109. No. 9. P. 4055–4063.

For citation: Lebedev VG, Nasonova TA, Deshevoy YuB, Lyrschikova AV, Dobrynina OA, Samoylov AS, Bushmanov AYu, Moroz B.B. Transplantation of Autologous Cells of Stromal Vascular Fraction of Adipose Tissue in Severe Local Radiation Injuries of Skin Caused by X-rays. Medical Radiology and Radiation Safety. 2017;62(1):5-11. Russian. DOI: 10.12737/25028  

PDF (RUS) Full-text article (in Russian)