Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 6. P. 58-74


DOI: 10.12737/article_5a2542f7216cb3.01677610

Radionuclide Diagnosis of Prostate Cancer: Positron Emission Tomography with 68Ga-PSMA Inhibitors and Their Pharmaceutical Development

A.A. Larenkov1,2, G.E. Kodina1

1. A.I. Burnasyan Federal Medical Biophysical Center of FMBA, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. M.V. Lomonosov Moscow State University, Moscow, Russia

A.A. Larenkov – PhD in Chem., Head of the Laboratory for Technology and Methods Of Monitoring Radiopharmaceuticals; G.E. Kodina – PhD in Chem., Head of the Department of Radiation Technologies for Medical Purposes


This review is devoted to the synthesis of the main and most relevant data on the development and clinical use of radiopharmaceuticals (RPs) based on PSMA-inhibitors labeled with 68Ga for the diagnosis of prostate cancer (PC).

The generator method of 68Ga production, which ensures the wide availability of this radionuclide for medical organizations, is the reason for the permanent interest to the RPs based on 68Ga. The development of RPs based on inhibitors of the prostate-specific membrane antigen became the second wave of global excitement about 68Ga-RPs, after labeled derivates of the ocreotide for the diagnosis of neuroendocrine tumors.

PC is one of the most urgent problems of modern oncology. The place of prostate cancer in the structure of the oncological morbidity of the male population, as well as the significance of radionuclide diagnostics in the clinical staging of the disease and the strategy of therapy are considered.

Data on the structure and properties of the prostate-specific membrane antigen (PSMA), its role in the body and expression in the foci of pathological processes are presented. Known PSMA inhibitors and the dependence of their properties on structure are considered.

The main part of the review is devoted to the key results of the pharmaceutical development of RPs based on PSMA-inhibitors labeled with 68Ga. The effect of the fragments (ligand, linker and chelator) on the final radiopharmaceutical molecule on the pharmacokinetics is considered. The review also includes data on the clinical efficacy of PET with 68Ga-PSMA in the diagnosis of PC. Data on the availability of 68Ga-RPs in Russia today, as well as references to regulatory documents that allow the use of such RPs, are presented.

In conclusion, a brief summary of the literature data and conclusions on the most promising radiopharmaceuticals for the diagnosis and therapy of prostate cancer and further perspectives are presented.

Key words: PET, 68Ga, radiopharmaceuticals, PSMA, prostate cancer


  1. Razbash A., Sevastianov Yu., Larenkov A. et al. Many- years experience of investigation, production and deliveries of Ga?68 generators from cyclotron Ltd., Obninsk. World J. Nucl. Med. 2013. Vol. 12. No. 1. P. 87–94.
  2. ZAO «Tsiklotron». Generator Galliya -68: 2017. Available at: (accessed 15.06.2017). (In Russ.).
  3. Rösch F., Riss P.J. The reneaissance of the 68Ge/68Ga radionuclide generator initiates new development in 68Ga кadiofarmaceutical сhemistry. Curr. Top. Med. Chem. 2010. Vol. 10. P. 1633–1668.
  4. Ambrosini V., Fanti S. 68Ga?DOTA-peptides in the diagnosis of NET. PET Clinics. 2015. Vol. 9. P. 37–42.
  5. Larenkov A.A., Bruskin A.B., Kodina G.E. Radionuklidy galliya v yadernoy meditsine: radiofarmatsevticheskiye preparaty na osnove izotopa 68Ga . Meditsinskaya radiologiya i radiatsionnaya bezopasnost. 2011. Vol. 56. No. 5. P. 56–73. (In Russ.).
  6. Velikyan I. 68Ga?Based radiopharmaceuticals: production and application relationship. Molecules. 2015. Vol. 20. P. 12913–12943.
  7. 1st World Congress on Ga?68 and Peptide Receptor Radionuclide Therapy (PRRNT) Abstracts. World J. Nucl. Med. 2011. Vol. 10. P. 25–98.
  8. 4th Theranostics World Congress. Endocrine Abstracts. 2016. Vol. 47. DOI: 10.1530/endoabs.
  9. Will L., Sonni I., Kopka K. et al. Radiolabeled prostate-specific membrane antigen small-molecule inhibitors. Quart. J. Nucl. Med. Mol Imag. 2017. Vol. 61. P. 168–180. DOI: 10.23736/S1824-4785.17.02977-6.
  10. Schreiter V., Reimann C., Geisel D. et al. Nuclear medicine imaging of prostate cancer. Fortschr Röntgenstr. 2016. Vol. 188. P. 1037–1044.
  11. Pillai M.R.A., Nanabala R., Joy A. et al. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl. Med. Biol. 2016. Vol. 43. P. 692–720. DOI: 10.1016/j.nucmedbio.2016.08.006.
  12. Lütje S., Heskamp S., Cornelissen A.S. et al. PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics. 2015. Vol. 5. P. 1388–1401. DOI: 10.7150/thno.13348.
  13. Bolla M., van Poppel H., editors. Management of Prostate Cancer. A Multidisciplinary Approach. 2nd ed. Springer Nature. 2017.
  14. Gourni E., Henriksen G. Metal-based PSMA radioligands. Molecules. 2017. Vol. 22. P. 523–556. DOI: 10.3390/molecules22040523.
  15. Fendler W.P., Eiber M., Beheshti M. et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imag. 2017. Vol. 44. No. 6. P. 1014–1024. DOI: 10.1007/s00259-017-3670-z.
  16. Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2016. CA Cancer J. Clin. 2016. Vol. 66. P. 7–30.
  17. Kaprin A.D., Starinskiy V.V., Petrova G.V. Zlokachestvennyye novoobrazovaniya v Rossii v 2015 godu (zabolevayemost i smertnost). Moscow. 2017. (In Russ.).
  18. Alekseyev B.Ya., Kaprin A.D., Matveyev V.B., Nyushko K.M. Klinicheskiye rekomendatsii po diagnostike i lecheniyu raka predstatelnoy zhelezy. Moscow: Obshcherossiyskiy soyuz obshchestvennykh obyedineniy assotsiatsii onkologov Rossii. 2014. (In Russ.).
  19. Dariy E.V. Rasprostranennyy (metastaticheskiy) rak predstatelnoy zhelezy u lits starshey vozrastnoy gruppy: sovremennyy vzglyad na lecheniye. Lechebnoye delo. 2016. Vol. 2. P. 44–50. (In Russ.).
  20. Pushkar' D.Yu., Govorov A.V., Sidorenkov A.V. et al. Rannyaya diagnostika raka predstatel'noi zhelezy. Metodicheskie rekomendatsii N 19. Moscow: Departament zdravookhraneniya Moskvy. 2015. (In Russ).
  21. Andriole G.L., Crawford E.D., Grubb R.L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 2009. Vol. 360. P. 1310–1319.
  22. Maurer T., Eiber M., Schwaiger M., Gschwend J.E. Current use of PSMA–PET in prostate cancer management. Nat. Rev. Urol. 2016. Vol. 13. P. 226–235. DOI: 10.1038/nrurol.2016.26.
  23. Rajasekaran A.K., Anilkumar G., Christiansen J.J. Is prostate-specific membrane antigen a multifunctional protein? Amer. J. Physiol. Cell Physiol. 2005. Vol. 288. P. 975–981.
  24. O’Keefe D.S., Bachich D., Heston W.D.W. Prostate specific membrane antigen. In: Prostate Cancer, Biology, Genetics, and the New Therapeutics. Humana Press. 2001. P. 307–326.
  25. Zhou J., Neale J.H., Pomper M.G., Kozikowski A.P. NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nature Rev. Drug Discovery. 2005. Vol. 4. P. 1015–1026.
  26. Mannweiler S., Amersdorfer P., Trajanoski S. et al. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res. 2009. Vol. 15. P. 167–172.
  27. Ghosh A., Heston W.D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell Biochem. 2004. Vol. 91. P. 528–539.
  28. Ross J.S., Sheehan C.E., Fisher H.A. et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res. 2003. Vol. 9. P. 6357–6362.
  29. Perner S., Hofer M.D., Kim, R. et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum. Pathol. 2007. Vol. 38. P. 696–701.
  30. Israeli R.S., Powell C.T., Corr J.G. et al. Expression of the prostate-specific membrane antigen. Cancer Res. 1994. Vol. 54. P. 1807–1811.
  31. Wernicke A.G., Edgar M.A., Lavi E. et al. Prostate-specific membrane antigen as a potential novel vascular target for treatment of glioblastoma multiforme. Arch. Pathol. Lab. Med. 2011. Vol. 135. P. 1486–1489.
  32. Haffner M.C., Kronberger I.E., Ross, J.S. et al. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum. Pathol. 2009. Vol. 40. P. 1754–1761.
  33. Lütje S., Gomez, B., Cohnen J. et al. Imaging of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-HBED-CC-PSMA PET/CT. Clin. Nucl. Med. 2017. Vol. 42. P. 20–25. Doi: 10.1097/RLU.0000000000001454.
  34. Rajasekaran S.A., Anilkumar G., Oshima E. et al. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell. 2003. Vol. 14. P. 4835–4845.
  35. Eder M., Eisenhut M., Babich J., Haberkorn U. PSMA as a target for radiolabelled small molecules. Eur. J. Nucl. Med. Mol. Imaging. 2013. Vol. 40. P. 819–823.
  36. Zuo D., Bzdega T., Olszewski R.T. et al. Effects of N-Acetylaspartylglutamate (NAAG) peptidase inhibition on release of glutamate and dopamine in prefrontal cortex and nucleus accumbens in phencyclidine model of schizophrenia. J. Biol. Chem. 2012. Vol. 287. P. 21773–21782. DOI: 10.1074/jbc.M112.363226.
  37. Barinka C., Rojas C., Slusher B., Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr. Med. Chem. 2012. Vol. 19. P. 856–870.
  38. Yao D., Trabulsi E.J., Kostakoglu L. et al. The utility of monoclonal antibodies in the imaging of prostate cancer. Semin. Urol. Oncol. 2002. Vol. 20. P. 211–218.
  39. Taneja S.S. ProstaScint® scan: Contemporary use in clinical practice. Rev. Urol. 2004. Vol. 6. P. 19–28.
  40. Elsaesser-Beile U., Wolf P., Gierschner D. et al. A new generation of monoclonal and recombinant antibodies against cell-adherent prostatespecific membrane antigen for diagnostic and therapeutic targeting of prostate cancer. Prostate. 2006. Vol. 66. P. 1359–1370.
  41. Wolf P., Freudenberg N., Buehler P. et al. Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate. 2010. Vol. 70. P. 562–569.
  42. Holland J.P., Divilov V., Bander N.H. et al. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 2010. Vol. 51. P. 1293–1300.
  43. Pandit-Taskar N., O’Donoghue J.A., Ruan S. et al. First-in-human imaging with 89Zr-Df-IAB2M фnti-PSMA minibody in patients with metastatic prostate cancer: Pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J. Nucl. Med. 2016. Vol. 57. P. 1858–1864.
  44. Viola-Villegas N.T., Sevak K.K., Carlin S.D. et al. Noninvasive imaging of PSMA in prostate tumors with 89Zr-labeled huJ591 engineered antibody fragments: The faster alternatives. Mol. Pharm. 2014. Vol. 11. P. 3965–3973.
  45. Lupold S.E., Hicke B.J., Lin Y., Coffey D.S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002. Vol. 62. P. 4029–4033.
  46. Rockey W.M., Huang L., Kloepping K.C. et al. Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg. Med. Chem. 2011. Vol. 19. P. 4080–4090.
  47. Jackson P.F., Cole D.C., Slusher B.S. et al. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alphalinked acidic dipeptidase. J. Med. Chem. 1996. Vol. 39. P. 619–622.
  48. Kozikowski A.P., Nan F., Conti P. et al. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J. Med. Chem. 2001. Vol. 44. P. 298–301.
  49. Zhang Z., Zhu Z., Yang D. et al. Preparation and affinity identification of glutamic acid-urea small molecule analogs in prostate cancer. Oncology Letters. 2016. Vol. 12. No. 2. P. 1001–1006. DOI: 10.3892/ol.2016.4699.
  50. Pomper M.G., Musachio J.L., Jiazhong Zhang J. et al. 11C-MCG: synthesis, uptake selectivity, and primate PET of a probe for glutamate carboxypeptidase II (NAALADase). Mol. Imag. 2002. Vol. 1. P. 96–101.
  51. Lin M., Welch M.J., Lapi S.E. Effects of chelator modifications on 68Ga?labeled [Tyr3]octreotide conjugates. Mol. Imag. Biol. 2013. Vol. 15. P. 606–613.
  52. Banerjee S.R., Pullambhatla M., Byun Y. et al. 68Ga? labeled inhibitors of prostate-specific membrane antigen (psma) for imaging prostate cancer. J. Med. Chem. 2010. Vol. 53. P. 5333–5341. DOI: 10.1021/jm100623e.
  53. Roesch F., Riss P.J. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr. Top. Med. Chem. 2010. Vol. 10. P. 1633–1668.
  54. Eder M., Schäfer M., Bauder-Wüst U. et al. 68Ga?complex lipophilicity and the targeting property of a urea based PSMA inhibitor for PET imaging. Bioconjug. Chem. 2012. Vol. 23. P. 688–697.
  55. Afshar-Oromieh A., Malcher A., Eber M. et al. PET imaging with [68Ga]gallium labeled PSMA ligand for the diagnosis of prostate cancer: Biodistribution in humans and first evaluation in tumor lesions. Eur. J. Nucl. Med. Mol. Imaging. 2013. Vol. 40. P. 486–495.
  56. Eder M., Löhr T., Bauder-Wüst U. et al. Pharmacokinetic properties of peptidic radiopharmaceuticals: reduced uptake of (EH)3-conjugates in important organs. J. Nucl. Med. 2013. Vol. 54. P. 1327–1330.
  57. Hofström С., Orlova A., Altai M. et al. Use of a HEHEHE purification tag instead of a hexahistidine tag improves biodistribution of affibody molecules site-specifically labeled with 99mTc, 111In, and 125I. J. Med. Chem. 2011. Vol. 54. P. 3817–3826.
  58. Schäfer М., Bauder-Wüst U., Leotta K. et al. A dimerized urea-based inhibitor of the prostate-specific membrane antigen for 68Ga?PET imaging of prostate cancer. EJNMMI Res. 2012. Vol. 2. P. 23–33.
  59. Dijkgraaf I., Yim C.-B., Franssen G.M. et al. PET imaging of αvβ3 integrin expression in tumours with 68Ga?labelled mono-, di- and tetrameric RGD peptides. Eur. J. Nucl. Med. Mol. Imag. 2011. Vol. 38. P. 128–137. DOI: 10.1007/s00259-010-1615-x.
  60. Baranyai Z., Reich D., Vágner A. et al. A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform. Dalton Trans. 2015. Vol. 44. P. 11137–11146.
  61. Benešová M., Schäfer M., Bauder-Wüst U. et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J. Nucl. Med. 2015. Vol. 56. P. 914–920.
  62. Benešová M., Bauder-Wüst U., Schäfer M. et al. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)- targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J. Med. Chem. 2016. Vol. 59. P. 1761-1775.
  63. Kratochwil C., Giesel F.L., Eder M. et al. [177Lu]lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imags. 2015. Vol. 42. P. 987–988.
  64. Weineisen M., Simecek J., Schottelius M. et al. Synthesis and preclinical evaluation of DOTAGa?conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res. 2014. Vol. 4. P. 63. DOI: 10.1186/s13550-014-0063-1.
  65. Weineisen M., Schottelius M., Simecek J. et al. 68Ga? and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies.. J. Nucl. Med. 2015. Vol. 56. P. 1169–1176.
  66. Eder M., Schafer M., Bauder-Wüst U. et al. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014. Vol. 74. P. 659–668.
  67. Gourni E., Canovas C., Goncalves V. et al. (R)-NODAGAPSMA: A versatile precursor for radiometal Leling and nuclear imaging of PSMA positive tumors. PLoS ONE. 2015. Vol. 10. P. 1–16. DOI: 10.1371/journal.pone.0145755.
  68. Baur B., Solbach C., Andreolli E. et al. Radiolabelling and in vitro characterization of the gallium-68-, yttrium-90- and lutetium-177-labelled PSMA ligand, CHX-A"-DTPA-DUPA-Pep. Pharmaceuticals. 2014. Vol. 7. P. 517–529.
  69. Wüstemann T., Bauder-Wüst U., Schäfer M. et al. Design of internalizing PSMA-specific glu-ureido-based radiotherapeuticals. Theranostics. 2016. Vol. 6. P. 1085–1095.
  70. Kratochwil C., Giesel F.L., Bruchertseifer F. et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur. J. Nucl. Med. Mol. Imag. 2014. Vol. 41. P. 2106–2119.
  71. Michauda L., Touijerc K.A. Molecular imaging for prostate cancer: Performance analysis of 68Ga?PSMA PET/CT versus choline PET/CT. Actas Urol. Esp. 2017 (article in press). DOI: 10.1016/j.acuro.2016.09.015.
  72. Perera M., Papa N., Christidis D. et al. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur. Urol. 2016. Vol. 70. P. 926–937.
  73. Verburg F.A., Pfister D., Heidenreich A. et al. Extent of disease in recurrent prostate cancer determined by [68Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur. J. Nucl. Med. Mol. Imag. 2016. Vol. 43. P. 397–403.
  74. Afshar-Oromieh A., Avtzi E., Giesel F.L. et al. The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. J. Nucl. Med. 2015. Vol. 42. P. 197–209.
  75. Eiber M., Weirich G., Holzapfel K. et al. Simultaneous Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur. Urol. 2016. Vol. 70. No. 5. P. 829–836.
  76. Hijazi S., Meller B., Leitsmann C. et al. Pelvic lymph node dissection for nodaloligometastatic prostate cancer detected by 68Ga-PSMA-positron emission tomography/computerized tomography. Prostate. 2015. Vol. 75. P. 1934–1940.
  77. Maurer T., Gschwend J.E., Rauscher I. et al. Diagnostic efficacy of gallium-PSMA positron emission tomography compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J. Urol. 2016. Vol. 195. P. 1436–1443.
  78. Budaus L., Leyh-Bannurah S.R., Salomon G. et al. Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur. Urol. 2016. Vol. 69. P. 393–396.
  79. Maurer T., Eiber M., Schwaiger M. et al. Current use of PSMA-PET in prostate cancer management. Nat. Rev. Urol. 2016. Vol. 13. P. 226–235.
  80. Parimi V., Goyal R., Poropatich K. et al. Neuroendocrine differentiation of prostate cancer: a review. Amer. J. Clin. Exp. Urol. 2014. Vol. 2. P. 273–285.
  81. Alekseyev B.Ya., Nyushko K.M., Krasheninnikov A.A. у Metody diagnostiki i lecheniya oligometastazov u bolnykh rakom predstatelnoy zhelezy s progressirovaniyem zabolevaniya posle provedennogo radikalnogo le cheniya. Onkourologiya. 2016. Vol. 12. P. 64–73. (In Russ.).
  82. Rossiyskiy nauchnyy tsentr radiologii i khirurgicheskikh tekhnologiy Ministerstva zdravookhraneniya Rossiyskoy Federatsii: 2015. Available at: (accessed 15.06.2017). (In Russ.).
  83. Tlostanova M.S., Khodzhibekova M., Panfilenko A. et al. Vozmozhnosti sovmeshchennoy pozitronno-emissionnoy i kompyuternoy tomografii v diagnostike neyroendokrinnykh opukholey: pervyy opyt ispolzovaniya otechestvennogo modulya sinteza 68Ga-dota-tate. Sovremennyye tekhnologii v meditsine. 2016. Vol. 8. No. 4. P. 51–58. (In Russ.).
  84. Vallabhajosula S.; Nikolopoulou A.; Babich J.W. et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: Pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J. Nucl. Med. 2014. Vol. 55. P. 1791–1798.
  85. Schottelius M., Wirtz M., Eiber M. et al. [111In]PSMA-I&T: Expanding the spectrum of PSMA-I&T applications towards SPECT and radioguided surgery. Eur. J. Nucl. Med. Mol. Imaging Res. 2015. Vol. 5. P. 68–76.

For citation: Larenkov AA, Kodina GE. Radionuclide Diagnosis of Prostate Cancer: Positron Emission Tomography with 68Ga-PSMA Inhibitors and Their Pharmaceutical Development. Medical Radiology and Radiation Safety. 2017;62(6):58-74. Russian. DOI: 10.12737/article_5a2542f7216cb3.01677610

PDF (RUS) Full-text article (in Russian)