Medical Radiology and Radiation Safety. 2017. Vol. 62. No. 4. P. 17-23

RADIATION SAFETY

DOI: 10.12737/article_59b106429c5b80.00887618

Radiological Justification of Radionuclide Inventory Control in the Context of the Long-Term Safety of Radioactive Waste Disposal Facilities

P.A. Blokhin, A.A. Samoylov

Nuclear Safety Institute of RAS, Moscow, Russia, e-mail: samoylov@ibrae.aс.ru; blokhin@ibrae.aс.ru

P.A. Blokhin – Junior Researcher; A.A. Samoylov – Senior Specialist

Abstract

Purpose: this paper concentrates on the development and validation of an approach enabling to identify radiologically relevant radionuclides in radioactive waste at different stages of their management, as well as to implement their direct instrumental control.

Material and methods: The research was carried out by comparing relevant radiological effects produced by radionuclides contained in activation RW from VVER-440 unit (reactor vessel, vessel internals and fuel rod cladding) on human at different stages of RW management. AKDAM-2.0 complex was used to evaluate the changes in the radionuclide inventory of materials during their irradiation and cooling.

Results: The study enabled to calculate relevant contribution of different radionuclides to the overall activity and dose rate from external and internal human exposure at different stages of RW management. This paper proposes a novel approach to identify radiologically relevant radionuclides based on a comparative evaluation of their contribution to the dose rate their activity, half-lives and migration properties. Relevant lists of radionuclides were developed for the studied materials. These radionuclides should be considered in the safety assessments of RW management practices and the post-closure safety demonstration for deep geological disposal facilities (DGDF). The study suggests that direct instrumental control is feasible for a number of radionuclides along with the use of an integrated approach enabling to evaluate the content of other radionuclides.

Conclusions: Further validation proved the viability of the proposed approach in the development of lists of radiologically relevant radionuclides. It has been found that the generated list is consistent with international practice used to demonstrate DGDF safety. It should be noted that only a small number of radionuclides should be considered radiologically relevant notwithstanding a variety of radionuclides generated due to material activation. In some cases, certain radionuclides are required to be added to the lists specified in the appendices to Radiation Safety Standards (RSS). However, the direct instrumental control covering the entire list of radiologically relevant radionuclides (for each RW management stage) is considered not feasible and hard to implement. The study shows that an integrated approach combining direct instrumental control for certain radionuclides, periodic destructive tests and inventory calculations is a preferred option. At the stage of periodic radiation monitoring in the disposal facility, such instrumental control should be focused on the evaluation of disposal system properties affecting its safety (hydrogeochemical, hydrogeological characteristics and etc.).

Key words: radioactive waste, disposal facility, radiation safety, safety assessment, radiologically relevant radionuclides, instrumental measurements, periodical radiation monitoring

REFERENCES

  1. Normy radiatsionnoy bezopasnosti (NRB-99/2009). SP 2.6.1.2523-09. (In Russ.).
  2. Linge I.I., Panchenko S.V., Gorelov M.M. O radiatsionnom kontrole radionuklidov dlya tseley gosudarstvennogo regulirovaniya v sfere okhrany okruzhayushchey sredy. Apparatura i novosti radiats.h izmereniy. 2017. No. 1. P. 2–8. (In Russ.).
  3. Bolshov L.A., Laverov N.P., Linge I.I. et al. Problemy yadernogo naslediya i puti ikh resheniya. Vol. 2. Moscow: Enegopromanalitika. 2013. 392 p. (In Russ.).
  4. Federalnyye normy i pravila v oblasti ispolzovaniya atomnoy energii. Kriterii priyemlemosti radioaktivnykh otkhodov dlya zakhoroneniya (NP-093-14). (In Russ.).
  5. Kapyrin I.V., Grigoryev F.V., Konshin I.N. Geomigratsionnoye i geofiltratsionnoye modelirovaniye v raschetnom kode GeRa. V sb.: «Superkompyuternyye dni v Rossii: Trudy mezhdunarodnoy konferentsii. 26–27 sentyabrya 2016. Moskva». Moscow: Publ. MGU. 2016. P. 133–139. (In Russ.).
  6. Postanovleniye Pravitelstva RF ot 19 oktyabrya 2012 g. 1069 «O kriteriyakh otneseniya tverdykh. zhidkikh i gazoobraznykh otkhodov k radioaktivnym otkhodam. kriteriyakh otneseniya radioaktivnykh otkhodov k osobym radioaktivnym otkhodam i k udalyayemym radioaktivnym otkhodam i kriteriyakh klassifikatsii udalyayemykh radioaktivnykh otkhodov».(In Russ.).
  7. Kolobashkin V.M., Rubtsov P.M., Ruzhanskiy P.A., Sidorenko V.D. Radiatsionnyye kharakteristiki obluchennogo yadernogo topliva. Spravochnik. Moscow: Energoatomizdat. 1983. 385 p. (In Russ.).
  8. Korenkov I.P., Shandala N.K., Lashchenova T.N., Sobolev A.I. Zashchita okruzhayushchey sredy pri ekspluatatsii i vyvode iz ekspluatatsii radiatsionno-opasnykh obyektov. In: Korenkova I.P., Kotenko K.V. (eds.). Moscow: Binom. 2014. 440 p. (In Russ.).
  9. Engovatov I.A., Mashkovich V.P., Orlov Yu.V. et al. Radiatsionnaya bezopasnost pri vyvode iz ekspluatatsii reaktornykh ustanovok grazhdanskogo i voyennogo naznacheniya. Moscow: PAIMS. 1999. 300 p. (In Russ.).
  10. Blokhin A.I., Demin N.A., Manokhin V.N. et al. Raschetnyy kompleks ACDAM-2.0 dlya issledovaniy yadernykh fizicheskikh svoystv materialov v usloviyakh neytronnogo oblucheniya. Voprosy atomnoy nauki i tekhniki. ser. Materialovedeniye i novyye materialy. 2015. Vol. 82. No. 3. P. 81–109. (In Russ.).
  11. Engineering Compendium on Radiation Shielding. R.G. Jaeger (Editor-in-Chief). Vol. 1. Heidelberg: Springer-Verlag Berlin GmbH. 1968. 357 p.
  12. Radionuclide Transport Report for the Safety Assessment SR-Site. TR-10-50. Stockholm: Svensk Kärnbränslehantering AB. 2010. 325 p.
  13. Dolgikh V.P. Razrabotka podkhodov opredeleniya perioda potentsialnoy opasnosti RAO s uchetom dochernikh radionuklidov.. In “ V Mezhdunar. konf. molodykh uchenykh i spetsialistov atomnoy otrasli. Saint Petersburg. 2013. P. 36–38. (In Russ.).
  14. Dolgikh V. . Razrabotka podkhodov k opredeleniyu perioda potentsialnoy opasnosti RAO. Rossiyskaya konferentsiya po radiokhimii «Radiokhimiya» 2012. P. 209. (In Russ.).
  15. Linge I.I., Samoylov A.A. Vozmozhnosti optimizatsii normativnogo regulirovaniya edinoy gosudarstvennoy sistemy obrashcheniya s radioaktivnymi otkhodami. Voprosy radiatsionnoy bezopasnosti. 2016. Vol. 84. No. 4. P. 12–20. (In Russ.).
  16. Bokov D., Samoilov A., Ragimov T., Sanders J. Development and Attestation of Gamma-Ray Measurement Methodologies for Use by Rostekhnadzor Inspectors in the Russian Federation. INL/CON-06-11453. Idaho: Idaho Nat.Lab. 2006. 9 p.
  17. Bushuev A., Kozhin A., Samoilov A. et al. Gamma-spectroscopy methodology for simultaneous determination of mass and isotopic composition of large plutonium samples. Nucl. Technol. 2010. Vol. 170. No. 2. P. 353–359.

For citation: Blokhin PA, Samoylov AA. Radiological Justification of Radionuclide Inventory Control in the Context of the Long-Term Safety of Radioactive Waste Disposal Facilities. Medical Radiology and Radiation Safety. 2017;62(4):17-23. Russian. DOI: 10.12737/article_59b106429c5b80.00887618

PDF (RUS) Full-text article (in Russian)