Medical Radiology and Radiation Safety. 2016. Vol. 61. No. 4. P. 24-28

RADIATION SAFETY

А.L. Polydin, E.N. Polydina

Specific Features of Accumulation, Reallocation and Migration of Uranium in Soil after the Gas-Dynamic Tests

E.I. Zababakhin Russia Research Institute of Technical Physics, Snezhinsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: To investigate the features of reallocation and migration of uranium in the soil as a result of economic activity of VNIITF.

Material and methods: Lays the soil profilesin view of the elementary geochemical landscapes. The test samples of samples are carried out consecutively selective allocation of physical and chemical forms of uranium and the subsequent analysis by spectrophotometric method using tributyl phosphate and arsenazo III. Defines the basic physical and chemical properties of the soil, the soil defining features as storage medium.

Result: Indicators of soil acidity and oxidation-reduction potential characterize the soil as an environment conducive to leaching of uranium in soils subaqueous position - there is a restoration of uranium to U4 + and his deposition.

In soils of eluvial position uranium content reached 260 mg / kg in the soil superaqual position - 350 mg / kg soil subaqueous position 64 mg / kg. This uranium content of more than 1700 times the content of uranium background portion, but does not exceed the controlled levels.

In soils of eluvial and superaqual position prevails acid-soluble forms of uranium (form, mainly due to sesquioxide). Only in the upper soil horizons superaqual position uranium associated mostly with watersoluble carbonates. In subaqueous soils position uranium is preferably in the form of a mobile, which is characterized as pH dependent and uranium leached from the soil profile in the form of soluble carbonates changes in environmental conditions.

The proportion of potentially mobile forms of uranium in these soils reaches 90 %. This form of distribution in the study area due to the filtering ability of soils and their oxidation-reduction regime. Uranium is found in all soils, mainly in the most common fractions of 1- 0.05 mm, where its share reaches 90 %.

Key words: long-living radionuclides, uranium, forms of occurrence, soil, fractional composition

 REFERENCES

  1. SanPiN 2.6.1.2523-09 Normy radiatsionnoi bezopasnosti (NRB-99/2009): Sanitarno-epidemiologicheskie pravila i normativy. Moscow: Federal'nyi tsentr gigieny i epidemiologii Rospotrebnadzora. 2009. 100 p. (In Russ.).
  2. O radiatsionnoi bezopasnosti naseleniya: FZ ot 19.07.2011 No. 242 FZ. Yuzhnoural'skaya panorama ot 19.07.2011. 12 p. (In Russ.).
  3. Minkina T.I. Soedineniya tyazhelykh metallov v pochvakh Nizhnego Dona, ikh transformatsiya pod vliyaniem prirodnykh i antropogennykh faktorov. Rostov-na-Donu: Koloss. 2008. 24 p. (In Russ.).
  4. Evseeva L.S., Perel'man A.I. Geokhimiya urana v zone gipergeneza. - Moscow: Gosudarstvennoe izdatel'stvo literatury v oblasti nauki i tekhniki. 1962. 239 p. (In Russ.).
  5. Istochniki, effekty i opasnost' po deistviyu atomnoi radiatsii. Doklad nauchnogo komiteta OON po deistviyu atomnoi radiatsii General'noi assamblee za 1988 g. NKDaR OON. Moscow: Mir. 1993. 728 p. (In Russ.).
  6. Predely postupleniya radionuklidov dlya rabotayushchikh s radioaktivnymi veshchestvami v otkrytom vide. Publikatsiya 30 MKRZ. Chast' 3. Moscow: Energoatomizdat. 1984. 540 p. (In Russ.).
  7. SP 2.6.6.1168-02. Sanitarnye pravila obrashcheniya s radioaktivnymi otkhodami. Sanitarnye pravila. Moscow.: Minzdrav Rossii. 2003. 40 p. (In Russ.).
  8. Otsenka vozdeistviya na okruzhayushchuyu sredu ot primeneniya yadernykh materialov pri provedenii NIR i OKR v FGUP «RFYaTs - VNIITF im. akad. I. Zababakhina» [Elektronnyi resurs]. Snezhinsk. 2012. 34 p. Rezhim dostupa: http://www.vniitf.ru (In Russ.).
  9. Mamontov V.G., Panov N.P., Kaurichev I.S., Ignat'ev N.N. Obshchee pochvovedenie. Moscow: KOLOSS. 2006. 456 p. (In Russ.).
  10. Bekman N.N. Ekologicheskaya radiokhimiya i radioekologiya. Radiokhimiya IV. Moscow: ONTOPRINT. 2015. 399 p. (In Russ.).
  11. Kozachenko V.P. Obosnovanie priemov ratsional'nogo ispol'zovaniya, obrabotki i melioratsii zemel' sel'skokhozyaistvennogo naznacheniya Chelyabinskoi oblasti. Chelyabinsk: ChelGU. 1999. 134 p. (In Russ.).
  12. Yashin I.M., Shilov L.L., Raskatov V.A. Metodologiya i opyt izucheniya migratsii veshchestva. Moscow: Publ. MSKha. 2001. 173 p. (In Russ.).
  13. Dospekhov B.A. Metodika polevogo opyta. Moscow: agropromizdat. 1985. 351 p. (In Russ.).
  14. Vadyunina A.F., Korchagina V.A. Metody opredeleniya fizicheskikh svoistv i gruntov. Moscow: Vysshaya shkola. 1961. 345 p. (In Russ.).
  15. Smirnova E.A. Vyshchelachivanie radionuklidov iz pochvy i chastits radionuklidnykh vypadenii 30-kilometrovoi zony ChaES. Trudy Radievogo instituta im. V.G. Khlopina. 2009. No. 14. P. 311-317. (In Russ.).
  16. Sinyavskii V.A. Fizicheskie, fiziko-khimicheskie i khimicheskie metody analiza v ekologii pochv. Chelyabinsk: ChelGU. 2004. P. 36. (In Russ.).
  17. Uralbekov B.M., Satybaldiev B.S., Nazarkulova Sh.N. Uran i radii v mineral'nykh sostavlyayushchikh pochv mestorozhdeniya Kurdai. V sb.: «Materialy mezhdunarodnoi konferentsii po analiticheskoi khimii i ekologii». Almaty: KazNU. 2010. P. 86-93. (In Russ.).
  18. Tessier A. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analitical Chemistry. 1979. No. 51. P. 844-851.
  19. Marei N.A., Zykova A.S. Metodicheskie rekomendatsii po sanitarnomu kontrolyu za soderzhaniem radioaktivnykh veshchestv v ob"ektakh vneshnei sredy. Moscow: Vtoraya tipografiya. 1980. 336 p. (In Russ.).

For citation: Polydin AL, Polydina EN. Specific Features of Accumulation, Reallocation and Migration of Uranium in Soil after the Gas-Dynamic Tests. Medical Radiology and Radiation Safety. 2016;61(4):24-8. Russian.

PDF (RUS) Full-text article (in Russian)