Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 5-11

RADIATION BIOLOGY

S.V. Osovets

Revisiting the Theory of Radiation Injury and Recovery

Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk region, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: To develop an alternative approach (regarding the Blair-Davidson theory) to quantitative description of radiation injury and recovery processes based on common radiobiological patterns typical for deterministic effects.

Results: Based on quantitative patterns of deterministic effects a new distribution of recovery potential (U) following a whole body irradiation of mammals was estimated:

where T was a duration of exposure, T1/2 was a half recovery period during an exposure. U value ranged from 0 to 1 with T value ranging from 0 to T1/2. An equation of a residual dose De (absolute injury) at double external gamma exposure was derived:

where D was a dose from the first exposure event, t was a time interval between two sequential radiation exposures, t 1/2 was a half recovery period after the irradiation. A suggested relation between De and t was based on the assumption of the similarity of mathematical representations of recovery processes during irradiation and postirradiation periods. Additionally, a new relationship between a median dose D50 and duration of exposure T was obtained:

where θand θ1 were parameters of the mathematical model. The estimated relationships were tested using experimental data on acute X-ray irradiation of mice.

Conclusions: Based on the development of fundamental mathematical models used for quantitative description of deterministic effects, an alternative approach to modeling the processes of mammalian radiation injury and recovery was stated and considerably advanced compared to the original Blair-Davidson theory. Mathematical representations of recovery processes at external whole body exposure were shown to be similar, but the recovery rate for irradiation period differed from that for post-irradiation one. New distributions and equations were derived to provide an adequate description of the above mentioned ionizing radiation health effects in mammals. Further development of the theory is needed to practically apply it to radiology, radiobiology and radiation safety.

Key words: Blair-Davidson theory, radiation injury and recovery, external gamma-ray exposure, deterministic effects, mathematical models

REFERENCES

  1. Blair H.A. A formulation of the injury, life span, dose relations for ionizing radiations. 1 - Application to the mouse. 2 - Application to the guinea pig, rat, dog. University of Rochester. Atomic Energy Commission Report UR-206, UR-207. 1952.
  2. Djevidson G.O. Biologicheskie posledstvija obshhego gamma-obluchenija cheloveka. Moscow: Atomizdat. 1960. 108 p. (In Russ.).
  3. Korogodin V.I. Problemy postradiacionnogo vosstanovlenija. Moscow: Atomizdat. 1966. (In Russ.).
  4. Akoev I.G. Problemy postluchevogo vosstanovlenija. Moscow: Atomizdat. 1970. 368 p. (In Russ.).
  5. Akoev I.G., Maksimov G.K., Malyshev V.M. Luchevoe porazhenie mlekopitajushhih i statisticheskoe modelirovanie. Moscow: Atomizdat. 1972. 97 p. (In Russ.).
  6. Teoreticheskie predposylki i modeli processov radiacionnogo porazhenija sistem organizma. Pushhino: Institut biologicheskoj fiziki AN SSSR. 1975. 182 p. (In Russ.).
  7. Grigor'ev Ju.G., Popov V.I., Shafirkin A.V. et al. Somaticheskie jeffekty hronicheskogo gamma-obluchenija. Moscow: Jenergoatomizdat. 1986. 200 p. (In Russ.).
  8. Jarmonenko S.P., Vajnson A.A. Radiobiologija cheloveka i zhivotnyh. Moscow: Vyssh. shk. 2004. 549 p. (In Russ.).
  9. Petin V.G., Kim J.K., Zhurakovskaya G.P., Rassokhina A.V. Mathematical description of synergistic interaction of UV-light and hyperthermia for yeast cell. J. Photochem. Photobiol. B: Biol. 2000. Vol. 55. P. 74-79.
  10. Petin V.G., Kim J.K., Zhurakovskaya G.P., Dergacheva I.P. Some general regularities of synergistic interaction of hyperthermia with various physical and chemical inactivating agents. Int. J. Hyperthermia. 2002. Vol. 18. P. 40-49.
  11. Petin V.G., Kim J.K. Survival and recovery of yeast cells after combined treatment with ionizing radiation and hea. Radiat. Res. 2004. Vol. 161. P. 132-139.
  12. Petin V.G., Zhurakovskaja G.P., Komarova L.N. Radiobiologicheskie osnovy sinergicheskih vzaimodejstvij v biosfere. Moscow: GEOS. 2012. 219 p. (In Russ.).
  13. Teoreticheskie osnovy radiacionnoj mediciny. Moscow: AT. 2004. Vol. 1. 992 p. (In Russ.).
  14. Radiacionnye porazhenija cheloveka. Moscow: AT. 2001. Vol. 2. 432 p. (In Russ.).
  15. Osovec S.V. Osnovnye kolichestvennye harakteristiki i ogranichenija pri modelirovanii determinirovannyh radiobiologicheskih jeffektov. V sb.: «Istochniki i jeffekty obluchenija rabotnikov PO «MAJaK» i naselenija, prozhivajushhego v zone vlijanijapredprijatija, ch. 4». JuUrIBF. Cheljabinskij Dom pechati. 2012. P. 142-152. (In Russ.).
  16. Osovec S.V. Matematicheskoe modelirovanie zavisimosti mediannoj dozy ot moshhnosti izluchenija. Tezisy dokladov nauchno-tehnicheskoj konferencii «Dni nauki-99». Ozersk: OTI MIFI. 1999. Vol. 2. P. 88-90. (In Russ.).
  17. Osovec S.V., Skott B.R. Modelirovanie zavisimosti medianoj dozy ot moshhnosti izluchenija. IV s#ezd po radiacionnym issledovanijam, Moskva, 20-24 nojabrja 2001 g. Tezisy dokladov. Moscow.:Rossijskii universitet druzhby narodov. 2001. Vol. IV. P. 772. (In Russ.).
  18. Osovec S.V. Faktor moshhnosti dozy v ocenke i modelirovanii determinirovannyh jeffektov pri vneshnem obluchenii. Medical Radiology and Radiation Safety. 2005. Vol. 50. No. 3. P. 37-46. (In Russ.).
  19. Scott B.R., Habn F.F., McClellan R.D., Seller F.A. Risk estimators for radiation-induced bone marrow syndrome lethality in human. Risk Anal. 1998. Vol. 8. P. 393-402.
  20. Risk from Deterministic Effects of Ionizing Radiation. National Radiological Protection Board. Chilton. Didcot. 1996. Vol. 7. No. 3. P. 1-31.
  21. Scott B.R., Lyzlow A.W., Osovets S.V. Evaluating the risk of death via the hematopoietic syndrome mode for prolonged exposure of nuclear workers to radiation at very low rates. Health Phys. 1998. Vol. 74. No. 5. P. 545-553.
  22. Tjazhelova V.G. O vremennoj posledovatel'nosti razvitija luchevoj patologii. V sb. «Teoreticheskie predposylki i modeli processov radiacionnogo porazhenija sistem organizma». Nauchnyj centr biol. issledovanij. Institut biol. fiziki. Pushhino. 1975. P. 136-149. (In Russ.).
  23. Jones T.D., Morris M.D., Young R.W. Dose rate models for human survival after exposure to ionizing radiation. In: Proceedings of ANS Topical Perspectives and Emergency Planning. Bethesda, M.D. Sept. 15-17, 1986. P. 64-68.
  24. Framework of Emergency Response Intervention and Countermeasure Criteria IAEA. Vienna. Austria. Jul. 2004. 103 p.
  25. Darenskaja N.G., Koznova L.B., Akoev I.G., Nevskaja G.F. Otnositel'naja biologicheskaja jeffektivnost' izluchenij. Faktor vremeni obluchenija. Moscow: Atomizdat. 1968. 375 p. (In Russ.).

For citation: Osovets SV. Revisiting the Theory of Radiation Injury and Recovery. Medical Radiology and Radiation Safety. 2015;60(4):5-11. Russian.

PDF (RUS) Full-text article (in Russian)