Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 4. P. 36-42

RADIATION SAFETY

A.L. Polyudin, R.I. Yusupov

Investigation of Radioactive Gas-Dynamic Factors in the Trials of Russian Federal Nuclear Center VNIIEF

E.I. Zababakhin Russian Federal Nuclear Center - Russia Research Institute of Technical Physics, Snezhinsk, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: The study of the redistribution of uranium during the one-time decentralized emissions.

Material and methods: Were sampled aerosol aspiration and sedimentation processes. Selected soil at a distance of 250 m from the emission points and laid soil profiles, taking into account the elementary geochemical landscapes. In a sample of uranium samples were determined standard spectrophotometric method using tributyl phosphate and arsenazo III.

Result: The average uranium content in the air since the protective buildings decentralized single peak changes from 0.40 to 1.56 Bq/m3. The estimated dose was in the range of from 2,11×10-6 to 5,91×10-5 mSv. Investigation showed fractional aerosol distribution of particles up to 2 mm is not more than 46 %. The uranium content in the five-centimeter top layer of soil is in the range of from 32 to 151 mg/kg. The content of uranium in soil profiles pledged not exceed 360 mg/kg.

Conclusion: 1. The average uranium content in the air since the protective buildings experiment varies from 0.40 to 1.84 Bq/m3. The average uranium content in the air pilot fields varies from 0.15 to 1.77 Bq/m3. The estimated dose is not more than 5,91×10-5 mSv. Up to half of aerosols deposited at a distance of 10 km from the point of a single decentralized output. Fraction of particles that determine the primary effects of exposure (ie up to 2 microns) reaches 45.7 %. 2. The uranium content in the studied soils from 6 to 15 times greater than the maximum recorded natural uranium content. Maximum rates of uranium in soils experimental field associated with the presence of peat horizons, as well as high rates of soil density. Proportion of watersoluble forms of uranium reaches 1 %, and the mobile — 91 %. 3. Uranium in the upper soil horizons superaqual and subaqueous position is concentrated in the most mobile form (exchange or mobile) associated with the salts of sodium, potassium, calcium and soluble carbonates. In soils superaqual position uranium increasingly. In soils of eluvial position associated with uranium sesquioxide. Up to 95 % of the uranium in the future is likely to be redistributed into the underlying soil horizon.

Key words: long-lived radionuclides, uranium, forms of occurrence, soil emissions

REFERENCES

  1. Polyudin A.L., Faizrakhmanov F.F. Issledovanie kontsentratsii radionuklidov v vozdushnoi srede opytnykh polei pri gazodinamicheskikh issledovaniyakh. V sb.: «Promyshlennaya bezopasnost' i ekologiya». Sarov. 2010. P. 3-8. (In Russ.).
  2. Malashenko A.V. Mnogofaktornyi genezis professionalnoi legochnoi patologii u gornorabochikh uranovykh shakht. Medical Radiology and Radiation Safety. 2009. Vol. 54. No. 2. P. 5-12. (In Russ.).
  3. Malashenko A.V. Rak legkogo u shakhterov uranovykh rudnikov osadochnogo mestorozhdeniya. Medical Radiology and Radiation Safety. 2007. Vol. 52. No. 6. P. 10-12. (In Russ.).
  4. Mordashaeva V.V. Dlitel'nost' postupleniya urana i ego raspredeleniya v organakh i tkanyakh cheloveka. ˥dical Radiology and Radiation Safety. 2004. Vol. 49. No. 2. P. 5-12. (In Russ.).
  5. Kozachenko V.P. Obosnovanie priemov ratsional'nogo ispol'zovaniya, obrabotki i melioratsii zemel' sel'skokhozyaistvennogo naznacheniya Chelyabinskoi oblasti. Chelyabinsk: ChelGU. 1999. 134 p. (In Russ.).
  6. Marei N.A., Zykova A.S. Metodicheskie rekomendatsii po sanitarnomu kontrolyu za soderzhaniem radioaktivnykh veshchestv v ob"ektakh vneshnei sredy. Moscow: Vtoraya tipografiya. 1980. 336 p. (In Russ.).
  7. Spurnyi K., Iekh Ch., Sedlachek B. Aerozoli. Moscow: Atomizdat. 1964. 359 p. (In Russ.).
  8. Fuks N.A. Mekhanika aerozolei. Moscow: Akademii nauk SSSR. 1955. 340 p. (In Russ.).
  9. Bezuglaya E.Yu. Klimaticheskie kharakteristiki uslovii rasprostraneniya primesei v atmosfere. Saint Petersburg: Gidrometeoizdat. 1983. 328 p. (In Russ.).
  10. Byzova N.L. Tipovye kharakteristiki nizhnego 300-metrovogo sloya atmosfery po izmereniyam na vysotnoi machte. Moscow: Moskovskoe otdelenie gidrometeoizdata. 1982. 69 p. (In Russ.).
  11. Vinogradov A.P. Osnovnye cherty geokhimii urana. Moscow: AN SSSR. 1963. 352 p. (In Russ.).
  12. Vinogradov A.P. Geokhimiya redkikh i rasseyannykh khimicheskikh elementov v pochvakh. Moscow: AN SSSR. 1957. 238 p. (In Russ.).
  13. Gus'kova V.N. Uran. Radiatsionno-gigienicheskaya kharakteristika. Moscow: Atomizdat. 1972. 215 p. (In Russ.).
  14. Istochniki, effekty i opasnost ioniziruyushchei radiatsii. Doklad nauchnogo komiteta OON po deistviyu atomnoi radiatsii General noi assamblee za 1988 g. NKDAR OON. Moscow: Mir. 1993. 728 p. (In Russ.).
  15. Predely postupleniya radionuklidov dlya rabotayushchikh s radioaktivnymi veshchestvami v otkrytom vide. Publikatsiya 30 MKRZ. Ch. 3. Moscow: Energoatomizdat. 1984. 540 p. (In Russ.).
  16. Shein E.V., Goncharov V.M. Agrofizika. Rostov na Donu, Feniks, 2006, 400 p. (In Russ.).
  17. Smirnova E.A. Vyshchelachivanie radionuklidov iz pochvy i chastits radionuklidnykh vypadenii 30-kilometrovoi zony ChNPP. Trudy Radievogo in-ta im. V.G. Khlopina. 2009. Vol. XIV. P. 311-317. (In Russ.).
  18. Ladonin D.V. Soedineniya tyazhelykh metallov v pochvakh - problemy i metody izucheniya. Pochvovedenie. 2002. No. 6. P. 682-692. (In Russ.).
  19. Protasov N.A. Geokhimiya prirodnykh landshaftov. Voronezh: Poligraficheskii tsentr Voronezhskogo gos. un-ta. 2008. 36 p. (In Russ.).
  20. Uralbekov B.M., Satybaldiev B.S., Nazarkulova Sh.N. Uran i radii v mineral'nykh sostavlyayushchikh pochv mestorozhdeniya Kurdai. V sb.: «Materialy mezhdunarodnoi konferentsii po analiticheskoi khimii i ekologii». Almaty: KazNU. 2010. P. 86-93. (In Russ.).
  21. Tessier A. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analitical Chemistry. 1979. Vol. 51. P. 844-851.

For citation: Polyudin AL, Yusupov RI. Investigation of Radioactive Gas-Dynamic Factors in the Trials of Russian Federal Nuclear Center VNIIEF. Medical Radiology and Radiation Safety. 2015;60(4):36-42. Russian.

PDF (RUS) Full-text article (in Russian)