Medical Radiology and Radiation Safety. 2015. Vol. 60. No. 3. P. 32-40

RADIATION SAFETY

K.A. Chizhov1, A.V. Simakov1, I. Szó́ke2, I.K. Mazur1, N.K. Mark2, I.D. Kudrin1, N.K. Shandala1, A.N. Krasnoschekov3, A.S. Kosnikov3, I.A. Kemsky4, M.K. Sneve5, G.M. Smith6, V.P. Kryuchkov1

3D Simulation as a Tool for Improving Safety Culture During the Remediation Work with Ionizing Radiation Sources

1. A.I. Burnasyan Federal Medical Biophysical Center of FMBA, Moscow, Russia, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Institute for Energy Technology; 3. Northwest Center for Radioactive Waste Management “SevRAO”; 4. Interregional management No. 120 of FMBA; 5. Norwegian Radiation Protection Authority; 6. GMS Abingdon Ltd

ABSTRACT

Purpose: To improve the safety culture of personnel of the department Andreev Bay of Northwest Center for Radioactive Waste SevRAO — branch of Enterprise for Radioactive Waste RosRAO (NWC SevRAO) for spent nuclear fuel and radioactive waste through the use of dynamic three-dimensional modeling software.

Material and methods: NWC SevRAO is temporary storage of radioactive waste generated during operation and decommissioning of the nuclear submarines and ships. According to an integrated expert evaluation this site is the most dangerous nuclear facility in the Northwest of Russia. Environmental rehabilitation of the site is now in progress and is supported by strong international collaboration. For the department Andreev Bay of NWC SevRAO was developed software tools that allows dynamically visualize the radiation situation and calculate doses in the virtual 3D model of the territory and buildings of the industrial complex.

Results: Designed software tools help to reduce uncertainty in the assessment of radiation exposure during operations, i.e. to have more precise information of the possible radiation doses. This result is achieved by visualization of the radiation field and by the ability of creation of different scenarios and simulation on the computer with real-time assessment of radiation effects on participants of these works. The input data for calculations can be measurements of the radiation situation, made by personnel of radiation safety service, or the information about the activity, radionuclide composition and geometry of radiation sources. Software includes a powerful analytical unit designed for radiation safety staff to support decision making process. Software tools allows to raise the qualification of staff through training, to optimize doses by modeling of different scenarios of work and to plan individual doses for personnel in the forthcoming operations.

Key words: radiation hazardous facilities, safety culture, 3D simulation, methodology ALARA, radiological protection

REFERENCES

  1. Grigor'ev A.V. Istoriya i sostoyanie sistemy obrashcheniya s OYaT i RAO na Severo-Zapade Rossiiskoi Federatsii. Doklad na seminare KEG «Obrashchenie s RAO yadernogo naslediya pered zakhoroneniem: pererabotka, konditsionirovanie i khranenie», 17-19 May, 2011. Kheringsdorf - Ostrov Uzedom. Germaniya. 2011. 13 p. (In Russ.).
  2. Ilyin I., Kochetkov O., Simakov A. et al. Initial Threat Assessment. Radiological Risks Associated with SevRAO Facilities Falling Within the Regulatory Supervision Responsibilities of FMBA. Strålevern Rapport 2005:17, Østerås: Statens strålevern. Norway: NRPA. 2005. 61 p.
  3. Savkin M., Sneve M., Grachev M. et al. Medical and radiological aspects of emergency preparedness and response at SEVRAO facilities. J. Radiol. Protection, 2008. Vol. 28. No. 4. P. 499-509.
  4. Shandala N., Titov A., Novikova N. et al. Radiation Protection of the Public and Environment near Location of SevRAO Facilities. In Proc. of a NATO Advanced Research Workshop «Challenges in Radiation Protection and Nuclear Safety Regulation of the Nuclear Legacy». Springer: Dordrecht. 2008. P. 215-223.
  5. Sneve M., Kiselev M., Kochetkov O. et al. Improvement of the Regulative Base of the Occupational, Public and Environmental Protection Supervision during SNF Removal and in the Course of Remedial Works at SevRAO (Research Report). Strålevern Rapport 2008:8, Østerås: Statens strålevern. Norway: NRPA. 2008. 177 p.
  6. Simakov A.V., Sneve M.K., Abramov Yu.V. et al. Radiological Protection Regulation during Spent Nuclear Fuel and Radioactive Waste Management in the Western Branch of FSUE “SevRAO”. J. Radiol. Protection. 2008. Vol. 28. No. 4. P. 467-479.
  7. Shandala N.K., Filonova A.A., Shchelkanova E.S. et al. Radiatsionno-gigienicheskii monitoring v raione razmeshcheniya punkta vremennogo khraneniya otrabotannogo yadernogo topliva i radioaktivnykh otkhodov v gube Andreeva. Medical Radiology and Radiation Safety. 2014. Vol. 59. No. 2. P. 5-12. (In Russ.).
  8. Normy radiatsionnoi bezopasnosti NRB-99/2009. Gigienicheskie normativy. Moscow: SanPiN 2.6.1.2523-09. 2009. 116 p.
  9. Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP. 2007. Vol. 37. No. 2-4. 343 p.
  10. International Atomic Energy Agency. Key Practical Issues in Strengthening Safety Culture, INSAG-15. Vienna: IAEA. 2002. P. 2-4.
  11. Metodicheskie ukazaniya «Osobennosti primeneniya printsipa ALARA pri obrashchenii s OYaT i RAO v Filiale No. 1 FGUP «SevRAO». MU 2.6.1.05-08. B-ka FGBU GNTs FMBTs im. A.I. Burnazyana FMBA Rossii. 2008. (In Russ.).
  12. Kryuchkov V., Chumak V., Maceika E. et al. RADRUE method for reconstruction of external photon doses for Chernobyl liquidators in epidemiological studies. Health Phys. 2009. Vol. 97. No. 4. P. 275-298.
  13. Chizhov K.A., Simakov A.V., Kryuchkov V.P. Metod resheniya analiticheskikh zadach dlya obespecheniya radiatsionnoi bezopasnosti personala pri planirovanii rabot po likvidatsii posledstvii avarii na osnove interpolyatsii radiatsionnykh polei. Apparatura i novosti radiats. izmerenii. 2013. No. 2. P. 70-78. (In Russ.).
  14. Chizhov K.A., Simakov A.V., Kryuchkov V.P. Voprosy obespecheniya radiatsionnoi bezopasnosti pri vyvode iz ekspluatatsii radiatsionnykh ob"ektov. Bezopasnost' yadernykh tekhnologii i okruzhayushchei sredy. 2011. Vol. 3. P. 110-112. (In Russ.).
  15. Raigorodskii A.M. Ekstremal'nye zadachi teorii grafov i analiz dannykh. Moscow, Regulyarnaya i khaoticheskaya dinamika. 2009. 120 p. (In Russ.).
  16. Szó́ke I., Johnsen T. Human-centred radiological software techniques supporting improved nuclear safety. Nucl. Safety and Simulation. 2013. No. 4. P. 219-225.

For citation: Chizhov KA, Simakov AV, Szoke I, Mazur IK, Mark NK, Kudrin ID, Shandala NK, Krasnoschekov AN, Kosnikov AS, Kemsky IA, Sneve MK, Smith GM, Kryuchkov VP. 3D Simulation as a Tool for Improving Safety Culture during the Remediation Work with Ionizing Radiation Sources. Medical Radiology and Radiation Safety. 2015;60(3):32-40. Russian.

PDF (RUS) Full-text article (in Russian)