Medical Radiology and Radiation Safety. 2013. Vol. 58. No. 3. P. 5-23


J.A. Jones1, M. Epperly2, J. Law3, R. Scheuring3, C. Montesinos4, D. Popov5, V. Maliev6, K. Prasad7, J. Greenberg2


1. Center for space medicine / Baylor College of Medicine, Houston, TX, USA, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ; 2. Dept. Radiation Oncology, University of Pittsburgh, PIttsburgh, PA, USA; 3. NASA/Johnson Space Center, Houston, TX, USA; 4. Amerisciences, inc., Houston, TX USA; 5. Advanced Medical Technologies and Systems, Richmond Hills, Ontario, CA, USA; 6. Russian Academy of Sciences, Vladicaucas, Russia; 7. Premier Micronutrient Corporation, Palo Alto, CA, USA


Purpose: 1. Discuss the sources of radiation injury and roles of oxidative stress and radiation toxicity. 2. Define the exposure environment of astronauts and cosmonauts working in space and on future exploration-class missions. 3. Review the development of countermeasures for oxidative stress, radiation toxicity and radiation exposure for workers in extreme environments.

Methods: Multiple placebo-controlled, randomized prospective studies have been conducted which have studied the therapeutic and radioprotection effects of various oral, parenteral and combination countermeasures on the biological consequences and survival rates after acute and chronic radiation exposure.

Results: Discussion: Employing oral chemoprevention formulas, parenterally administered MnSOD-plasmid liposomes, and hyperimmune serum and vaccines directed on radiation-induced toxins, have resulted in reduced lipid peroxidation and DNA damage, as well as increased survival in cell cultures and whole animals receiving acute high-dose radiation exposures. Each of these strategies, alone and in combination, deserve further investigation in the pursuit of effective countermeasures and treatment for occupational exposures which induce oxidative damage.

Key words: Radiation, Space Medicine, Space Environmental Hazards, Oxidative Damage, Countermeasures


  1. Locke J. Space environment. In “Fundamentals of Aerospace Med.”, 3rd edition. Ed. by L. Dehart, J.R. Davis. Lippincott Williams & Wilkins. 2002.
  2. Jones J., Karouia F.Radiation disorders. In: “Principles of Clinical Medicine for Spaceflight”. Ed. by Barratt, S.Pool. New York: Springer. 2008.
  3. Jones J.A., Barratt M., Effenhauser R. et al. Medical issues for a human mission to Mars and Martian surface expeditions. J. Brit. Interplanet. Soc. 2004. Vol. 57. No. 3-4. P. 144-160.
  4. Cucinotta F.A., Schimmerling W., Wilson J.W. et al. Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 2001b. Vol. 156. P. 682-688.
  5. Cucinotta F.A., Manuel F.K., Jones J. et al. Space radiation and cataracts in astronauts. Radiat. Res. 2001a. Vol. 156. P. 460-466.
  6. Jones J.A., McCarten M., Manuel K. et al. Cataract formation mechanisms and risk in aviation and space crews. ASEM. 2007. Vol. 78. Suppl. 4. Section II. P. A56-66.
  7. Nelson G.A. Fundamental Space Radiobiology Gravitational & Space Biology Bulletin: Publication of the American Society for Gravitational & Space Biology. 2013. Vol. 16. P. 29-36.
  8. Ward J.F.DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Progress in Nucleic Acid Res. & Molecular Biol. 1988. Vol. 35. P. 95-125.
  9. Pietras R.J., Poen J.C., Gallardo D. et al. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res. 1999. Vol. 59. P. 1347-1355.
  10. Rosen E.M., Fan S., Goldberg I.D. et al. basis of radiation sensitivity. Part 2: Cellular and molecular determinants of radiosensitivity. Oncology. 2000. Vol. 14. P. 741-757.
  11. Oh C.W., Bump E.A., Kim J.S. et al. Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat. Res. 2001. Vol. 156. P. 232-240.
  12. Wu L.J., Randers-Pehrson G., Xu A.K. et al. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc. Nat. Acad. of Sci. of USA. 1999. Vol. 96. P. 4959-4964.
  13. Gajdusek C.M., Tian H., London S. et al. Gamma radiation effect on vascular smooth muscle cells in culture. Internat. J. Radiat. Oncol., Biol., Phys. 1996. Vol. 36. P. 821-828.
  14. Lehnert B.E., Iyer R. Exposure to low-level chemicals and ionizing radiation: reactive oxygen species and cellular pathways. Human & Experim. Toxicol. 2002. Vol. 21. P. 65-69.
  15. Spitz D.R., Azzam E.I., Li J.J. et al. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer & Metastasis Rev. 2004. Vol. 23. P. 311-322.
  16. Prasad K.N. Handbook of Radiobiology. New York City. CRC Press Inc. 1995.
  17. Martinez J.D., Pennington M.E., Craven M.T. et al. Free radicals generated by ionizing radiation signal nuclear translocation of p53. Cell Growth & Differentiation. 1997. Vol. 8. P. 941-949.
  18. Costantini P., Chernyak B.V., Petronilli V. et al. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 1996. Vol. 271. P. 6746-6751.
  19. Haimovitz-Friedman A., Kan C.C., Ehleiter D. et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Experim. Med. 1994. Vol. 180. P. 525-535.
  20. Leach J.K., Van Tuyle G., Lin P.S. et al. Biochemical and hematologic changes after short-term space flight. Cancer Res.,2001. Vol. 61. P. 3894-3901.
  21. Lucero H., Ga D., Tacciol G.E. Novel localization of the DNA-PK complex in lipid rafts. A putative role in the signal transduction pathway of the ionizing radiation response. J. Biol. Chem. 2003. Vol. 278. P. 22136-22143.
  22. Mizutani N., Fujikura Y., Wang Y.H. et al. Inflammatory and anti-inflammatory cytokines regulate the recovery from sublethal X-irradiation in rat thymus. Radiat. Res. 2002. Vol. 157. P. 281-289.
  23. Ivanov V.K., Gorski A.I., Maksioutov M.A. et al. Mortality among the Chernobyl emergency workers: estimation of radiation risks (preliminary analysis). Health Phys. 2001. Vol. 81. P. 514-521.
  24. Otake M., Neriishi K., Schull W.J. Cataract in atomic bomb survivors based on threshold model and the occurrence of severe epilation. Radiat. Res. 1996. Vol. 146. P. 339-348.
  25. Preston D.L., Shimizu Y., Pierce D.A. et al. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997. Radiat. Res. 2003. Vol. 160. P. 381-407.
  26. Law J., Scheuring R., Jones J. Space Radiat. Considerations for Exploration-Class Planetary Surface Operations. NASA/TP 2011-0000 March 2011.
  27. Hoffman R., Nelson L., Howland M. et al. Goldfrank’s Manual of Toxicologic Emergencies. New York: McGraw-Hill. 2007.
  28. Clement G. Fundamentals of Space Med. Dordrecht, Netherlands: Springer. 2005.
  29. Catlett C., Piggott P. Injuries. Radiat. Injuries. In: “Emergency Medicine: A Comprehensive Study Guide”. 6th edition. Tintinalli J., Kelen G., Stapcznski J., eds. New York: McGraw-Hill. 2004. Vol. 20. P. 50-59.
  30. Jones J., Karouia F., Casey R. Ionizing Radiation as a Carcinogen. In: “Comprehensive Toxicology, Vol. 14: Carcinogenesis”. IN: McQueen C., ed. Oxford EN: Elsevier. 2010.
  31. Committee on the Evaluation of Radiat. Shielding for Space Exploration, Aeronautics and Space Engineering Board. Managing Space Radiat. Risk in the New Era of Space Exploration. Washington DC: Nat. Res. Counci. 2008.
  32. Kane A., Kumar V. Environmental and nutritional pathology. In: “Robbins and Cotran Pathologic Basis of Disease.” Kumar V., Abbas A., Fausto N. eds. 7th edition. Philadelphia: Elsevier Saunders. 2005. P. 436-441.
  33. Shukitt-Hale B., Casadesus G., Cantuti-Castelvetri I. et al. Cognitive deficits induced by 56Fe radiation exposure. Adv. Space Res. 2003. Vol. 31. No. 1. P. 119-126.
  34. Hu S., Kim M.H., McClellan G.E., Cucinotta F.A. Modeling the acute health effects of astronauts from exposure to large solar particle events. Health Phys. 2009. Vol. 96. No. 4. P. 465-476.
  35. Grigoriev A.I., Potapov A.N., Jones J.A. et al. Medical support for interplanetary space flights. In: “Space Biology and Medicine”. 2009.
  36. Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996. Vol. 273. No. 5271. P. 59-63.
  37. Campbell K. Intensive oxygen therapy as a possible cause of retrolental fibroplasia: a clinical approach. Med. J. Australia. 1951. Vol. 2. P. 48-50.
  38. Kinsey V.E. Retrolental fibroplasia: cooperative study of retrolental fibroplasia and the use of oxygen. Arch. Ophthalmol. 1956. Vol. 56. P. 481-543.
  39. Patz A., Hoeck L., De La Cruz E. Studies on the effect of high oxygen administration in retrolental fibroplasia. Amer. J. Ophthalmol. 1952. Vol. 35. P. 1248-1253.
  40. Smith S.M., Davis-Street J.E., Fesperman J.V. et al. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project. J. Nutr. 2004. Vol. 134. P. 1765-1771.
  41. Stein T.P., Leskiw M.J. Oxidant damage during and after spaceflight. Amer. J. Physiol., Endocrinol. and Metabolism. 2000. Vol. 278. No. 3. P. 375-382.
  42. Smith S.M., Davis-Street J.E., Rice B.L. et al. Nutritional status assessment in semiclosed environments: groundbased and space flight studies in humans. J. Nutr. 2001. Vol. 131. No. 7. P. 2053-2061.
  43. Pross H.D., Casares A., Kiefer J. Induction and repair of DNA double-strand breaks under irradiation and microgravity. Radiat. Res. 2000. Vol. 153. No. 5. Pt 1. P. 521-525.
  44. Kiefer J., Pross H.D. Space radiation effects and microgravity. Mutation Res. 1999. Vol. 430. No. 2. P. 299-305.
  45. Hollander J., Gore M., Fiebig R. et al. Spaceflight downregulates antioxidant defense systems in rat liver. Free Radical Biol. and Med. 1998. Vol. 24. No. 2. P. 385-390.
  46. McKenzie R.C., Beckett G.J., Arthur J.R. Effects of selenium on immunity and aging. In: “Selenium: Its Molecular Biology and Role in Human Health.” Hatfield D.L., Berry M.J., Gladyshev V.N., eds. 2nd New York: Springer. 2006. P. 311-323.
  47. Roy M., Kiremidjian-Schumacher L., Wishe H.I. et al. Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biol. Trace Elem. Res. 1994. Vol. 41. No. 1-2. P. 103-114.
  48. Kiremidjian-Schumacher L., Roy M., Wishe H.I. et al. Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biol. Trace Elem. Res. 1994. Vol. 41. No. 1-2. P. 115-127.
  49. Kiremidjian-Schumacher L., Roy M., Glickman R. et al. Selenium and immunocompetence in patients with head and neck cancer. Biol. Trace Elem. Res. 2000. Vol. 73. No. 2. P. 97-111.
  50. Baum M.K., Miguez-Burbano M.J., Campa A., Shor- Posner G. Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J. Infect. Dis. 2000. Vol. 182. Suppl. 1. P. 69-73.
  51. Conklin J.J., Walker R.I. Military Radiobiology. Orlando: Academic Press. 1987.
  52. Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996. Vol. 273. No. 5271. P. 59-63.
  53. Morita S., Snider M.T., Inada Y. Increased N-pentane excretion in humans: a consequence of pulmonary oxygen exposure. Anesthesiology. 1986. Vol. 64. No. 6. P. 730-733.
  54. Loiseaux-Meunier M.N., Bedu M., Gentou C. et al. Oxygen toxicity: simultaneous measure of pentane and malondialdehyde in humans exposed to hyperoxia. Biomed. Pharmacotherapy. 2001. Vol. 55. No. 3. P. 163-169.
  55. Turanlahti M., Pesonen E., Lassus P., Andersson S. Nitric oxide and hyperoxia in oxidative lung injury. Acta Paediatrica. 2000. Vol. 89. No. 8. P. 966-970.
  56. Koudelova J., Mourek J. The lipid peroxidation in various parts of the rat brain: effect of age, hypoxia and hyperoxia. Physiol. Res. 1994. Vol. 43. No. 3. P. 169-173.
  57. Cailleux A., Allain P. Is pentane a normal constituent of human breath? Free Radical Biol. Med. 1993. Vol. 18. No. 6. P. 323-327.
  58. Kohlmuller D., Kochen W. Is n-pentane really an index of lipid peroxidation in humans and animals? A methodological re-evaluation. Analyt. Biochem. 1993. Vol. 210. No. 2. P. 268-276.
  59. Mallat Z., Philip I., Lebret M. et al. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation. 1998. Vol. 97. No. 16. P. 1536-1539.
  60. Oury T.D., Schaefer L.M., Fattman C.L. et al. Depletion of pulmonary EC-SOD after exposure to hyperoxia. Amer. J. Physiol. Lung Cellular and Molecular Physiol. 2002. Vol. 283. No. 4. P. 777-784.
  61. Takahashi H., Kosaka N., Nakagawa S. Alpha-Tocopherol protects PC12 cells from hyperoxia-induced apoptosis. J. Neurosci. Res. 1998. Vol. 52. No. 2. P. 184-191.
  62. Jaensch S., Cullen L., Raidal S.R. Normobaric hyperoxic stress in budgerigars: enzymic antioxidants and lipid peroxidation. Comparative Biochem. Physiol., Part C, Toxicol. & Pharmacol. 2001. Vol. 128. No. 2. P. 173-180.
  63. Kelly F.J., Cheeseman K.H. Distribution of vitamin E between tissues during periods of hyperoxic and nutritional stress in the preterm guinea pig. Comparative Biochem. Physiol. Part A. Physiol. 1993. Vol. 105. No. 3. P. 549-554.
  64. Webster N.R., Toothill C., Cowen P.N. Tissue responses to hyperoxia, biochemistry and Pathology. Brit. J. Anaesthesia. 1987. Vol. 59. No. 6. P. 760-771.
  65. Wender D.F., Thulin G.E., Smith G.J., Warshaw J.B. Vitamin E affects lung biochemical and morphologic response to hyperoxia in the newborn rabbit. Pediatric Res. 1981. Vol. 15. No. 3. P. 262-268.
  66. Jones J.A., Riggs P.K., Yang T. et al. Ionizing radiationinduced bioeffects in space and strategies to reduce cellular injury and carcinogenesis. ASEM. 2007. Vol. 78. No. 4. Section II Suppl. P. A67-78.
  67. Cucinotta F., Manuel K., Jones J.A. et al. Space radiation and cataracts in astronauts. Rad. Res. 2001. Vol. 156. No. 5. P. 460-466.
  68. Parker A.R., O’Meally R.N., Oliver D.H. et al. 8-Hydroxyguanosine repair is defective in some microsatellite stable colorectal cancer cells. Cancer Res. 2002. Vol. 62. No. 24. P. 7230-7233.
  69. Farber J.L. Mechanisms of cell injury by activated oxygen species. Environ. Health Perspect. 1994. Vol. 102. Suppl. 10. P. 17-24.
  70. Ward P.A. Oxygen radicals, cytokines, adhesion molecules, and lung injury. Environ. Health Perspect. 1994. Vol. 102.  Suppl. 10. P. 13-16.
  71. Subramaniam R.P., Asgharian B., Freijer J.I. et al. Analysis of lobar differences in particle deposition in the human lung. Inhal. Toxicol. 2003. Vol. 15. No. 1. P. 1-21.
  72. Oberdorster G. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal. Toxicol. 2002. Vol. 14. No. 1. P. 29-56.
  73. Lazaridis M., Broday D.M., Hov O., Georgopoulos P.G. Integrated exposure and dose modeling and analysis system-deposition of inhaled particles in the human respiratory tract. Environ. Sci. Technol. 2001. Vol. 35. No. 18. P. 3727-3734.
  74. Harvey R.P., Hamby D.M. Uncertainty in particulate deposition for 1 micrometer AMAD particles in an adult lung model. Radiat. Prot. Dosimetry. 2001. Vol. 95. No. 3. P. 239-247.
  75. Pinkerton K.E., Green F.H., Saiki C. et al. Distribution of particulate matter and tissue remodeling in the human lung. Environ. Health Perspect. 2000. Vol. 108. No. 11. P. 1063-1069.
  76. Porter D.W., Hubbs A.F., Mercer R. et al. Progression of lung inflammation and damage in rats after cessation of silica inhalation. Toxicol. Sci. 2004. Vol. 79. No. 2. P. 370-380.
  77. Gamble J.F., Hessel P.A., Nicolich M. Relationship between silicosis and lung function. Scand. J. Work Environ. Health. 2004. Vol. 30. No. 1. P. 5-20.
  78. Corsini E., Giani A., Lucchi L. et al. Resistance to acute silicosis in senescent rats: role of alveolar macrophages. Chem. Res. Toxicol. 2003. Vol. 16. No. 12. P. 1520-1527.
  79. Reid M.B. Muscle fatigue: mechanisms and regulation. In: “Handbook of Oxidants and Antioxidants in Exercise”. B.V. 2000. P. 599-630.
  80. Matuszczak Y., Farid M., Jones J. et al. N-Acetylcysteine inhibits muscle fatigue and glutathione oxidation during handgrip. Muscle and Nerve. 2005. Vol. 32. No. 5. P. 633-638. PMID: 16025522.
  81. Maliev V., Popov D., Jones J.A., Casey R.C. Mechanism of action for anti-radiation vaccine in reducing the Biol. impact of high-dose irradiation. Advances in Space Res. 2007. Vol. 40. P. 586-590.
  82. Niki E. Interaction of ascorbate and alpha-tocopherol. Ann. New York Acad. of Sci. 1987. Vol. 498. P. 186-199.
  83. Mak S., Egri Z., Tanna G. et al. Vitamin C prevents hyperoxia- mediated vasoconstriction and impairment of endothelium-dependent vasodilation. Amer. J. Physiol. Heart and Circulatory Physiol. 2002. Vol. 282. No. 6. P. H2414-2421.
  84. Heys A.D., Dormandy T.L. Lipid peroxidation in ironoverloaded spleens. Clin. Sci. (London). 1981. Vol. 60. No. 3. P. 295-301.
  85. Chen W.T., Lin Y.F., Yu F.C. et al. Effect of ascorbic acid administration in hemodialysis patients on in vitro oxidative stress parameters: influence of serum ferritin levels. Amer. J. Kidney Diseases. 2003. Vol. 42. No. 1. P. 158-166.
  86. Husain K., Sugendran K., Pant S.C. et al. Biochemical and pathological changes in response to hyperoxia and protection by antioxidants in rats. Indian J. Physiol. Pharmacol. 1992. Vol. 36. No. 2. P. 97-100.
  87. O’Byrne D.J., Devaraj S., Grundy S.M., Jialal I. Comparison of the antioxidant effects of Concord grape juice flavonoids alpha-tocopherol on markers of oxidative stress in healthy adults. Amer. J. Clinical Nutrition. 2002. Vol. 76. No. 6. P. 1367-1374.
  88. Kaplan et al. Soy and Atherosclerosis in male monkeys. J. Nutr. 2005. Vol. 135. P. 2852-2856.
  89. Zigler J.S. et al. Tempol-H inhibits opacification of lenses in organ culture. Free Radic. Biol. Med. 2003. Vol. 35. No. 10. P. 1194-1202.
  90. Jiang Qin, Cong Cao, Changlin Zhou, et al. Quercetin Attenuates UV- and H2O2-induced Decrease of Collagen Type I in Cultured Human Lens Epithelial Cells. J. Ocular Pharmacol, Therapeutics. 2008. Vol. 24. No. 2. P. 164-174.
  91. Nieman D.C., Henson D.A., Gross S.J. et al. Quercetin reduces illness but not immune perturbations after intensive exercise. Med. Sci. Sports. Exerc. 2007. Vol. 39.  No. 9. P. 1561-1569.
  92. Gaziev A.I., Sologub G.R. et al. Effect of vitamin-antioxidant micronutrients on the frequency of spontaneous and in vitro gamma-ray-induced micronuclei in lymphocytes of donors: the age factor. Carcinogenesis. 1996. Vol. 17. No. 3. P. 493-499.
  93. Pu F., Mishima K., Irie K. et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J. Pharmacol. Sci. 2007. Vol. 104. No. 4. P. 329-334.
  94. Wattel A., Kamel S., Mentaverri R. et al. Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem. Pharmacol. 2003. Vol. 65. No. 1. P. 35-42.
  95. Yamaguchi M., Hamamoto R., Uchiyama S., Ishiyama K. Effects of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro. Mol. Cell. Biochem. 2007. Vol. 303. No. 1-2. P. 83-88.
  96. Lupton J., Chapkin R.S. Chemopreventive effects of Omega-3 fatty acids. In “Cancer Chemoprevention: Vol I: Promising Chemoprevention Agents”. Kelloff G.J., Hawk E.T., Sigman C.C., eds. NJ: Humana Press, Totowa. 2004. P. 591-608.
  97. Barter P., Ginsberg H.N. Effectiveness of combined statin plus omega-3 fatty acid therapy for mixed dyslipidemia. Amer. J. Cardiol. 2008. Vol. 102. No. 8. P. 1040.
  98. Das U.N. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 2008. Vol. 7. No. 37.
  99. Arterburn L.M. et al. A developmental safety study in rats using DHA- and ARA-rich single cell oils. Food. and Chem. Tox. 2008. Vol. 38. P. 763-771.
  100. Arterburn L.M. et al. Algal-oil capsules and cooked salmon: nutritionally equivalent sources of DHA. J. Amer. Dietetic. Assn. 2008. Vol. 108. P. 1204-1209.
  101. Stanford M. and Jones J.A. Space radiation concerns for a manned mission to mars. Acta Astronautica. 1999. Vol. 45. No. 1. P. 39-47.
  102. Fugh-Berman A., Cott J.M. Dietary supplements and natural products as psychotherapeutic agents. Psychosomatic Med. 1999. Vol. 61. P. 712-728.
  103. Hibbeln J.R. Fish Consumption and major depression. Lancet. 1998. Vol. 351. P. 1213.
  104. Edwards R., Peet M., Shay J., Horrobin D. Omega-3 polyunsaturated fatty acids in the diet and in the red blood cell membranes of depressed patients. J. Affective Disorders. 1998. Vol. 48. P. 149-155.
  105. Peet M., Horrobin D. et al. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch. Gen. Psychiatry. 2002. Vol. 59. P. 913-919.
  106. Peet M. et al. Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs. 2005. Vol. 65. No. 8. P. 1051-1059.
  107. Nemets et al. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Amer. J. Psychiatry. 2002. Vol. 159. No. 3. P. 477.
  108. Su et al. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 2003. Vol. 13. No. 4. P. 267-271.
  109. Stoll et al. Omega 3 fatty acids in bipolar disorder: a preliminary controlled trial. Arch. Gen. Psychiatry. 1999. Vol. 56. No. 5. P. 507-512.
  110. Shao C., Roberts K.N., Markesbery W.R. et al. Oxidative stress in head trauma in aging. Free Radic. Biol. Med. 2006. Vol. 41.  No. 1. P. 77-85.
  111. Epperly M.W et al. Modulation of total body irradiation induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy. Radiat. Res. 2008. Vol. 170.  No. 4. P. 437-444.
  112. Epperly M.W., Wang H., Jones J. et al. Antioxidant-chemoprevention diet ameliorates late effects of total body irradiation and supplements radioprotection by MnSOD-plasmid liposome administration. Radiat. Res. 2011.
  113. Maliev V., Popov D., Casey R., Jones J.A. Mechanisms of action for an anti-radiation vaccine in reducing the biological impact of high-dose and dose-rate low-LET radiation exposure. Radiation biology. Radioecology. 2007. Vol. 47. No. 3. P. 286-291.
  114. Maliev V., Popov D. Immuno-therapy of acute radiation syndromes: extracorporeal immuno-lympho-plasmosorption. 38th Abstract F55-0007-10-1 Annual COSPAR Scientific Assembly.

For citation: Jones JA, Epperly M, Law J, Scheuring R, Montesinos C, Popov D, Maliev V, Prasad K, Greenberg J. Space Radiation Hazards and Strategies for Astronaut/Cosmonaut Protection. Medical Radiology and Radiation Safety. 2013;58(3):5-23.

PDF (ENG) Full-text article (in Inglish)