Medical Radiology and Radiation Safety. 2018. Vol. 63. No. 6. P. 5–20

RADIATION BIOLOGY

DOI: 10.12737/article_5c0b88579b10a6.86596118

A.N. Koterov1, L.N. Ushenkova1, E.S. Zubenkova1, A.A. Wainson2, I.E. Andrianova1, S.N. Luk’yanova1, A.M. Lyaginskaya1, V.N. Mal’tsev1, L.A. Ilyin1, A.S. Samoylov1, V.V. Uiba1

Acceleration of Laboratory Rats: Synthetic Study of Data for the Century in the Aspect of Possible Relationship with Radiosensitivity

1. A.I. Burnasyan Federal Medical Biophysical Center, Moscow, Russia. E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. ;
2. N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia

A.N. Koterov – Head of Lab., Dr. Sci. Biol.; L.N. Ushenkova – Leading Researcher, PhD Biol.;
E.S. Zubenkova – Leading Researcher, PhD Biol.; A.A. Wainson – Head of Group, Dr. Sci. Biol., Prof.;
I.E. Andrianova – Leading Researcher, Dr. Sci. Med.; S.N. Luk’yanova – Chief Researcher, Dr. Sci. Biol., Prof.;
A.M. Lyaginskaya – Chief Researcher, Dr. Sci. Biol., Prof.; V.N. Mal’tsev – Leading Researcher, Dr. Sci. Med., Prof.;
L.A. Ilyin – Dr. Sci. Med., Prof., Academician of RAS; A.S. Samoylov – Director General, Dr. Sci. Med., Prof. RAS;
V.V. Uiba – Dr. Sci. Med., Prof.

Abstract

Purpose: A synthetic study of published data on the growth and development of laboratory rats (albino random-bred, Wistar and Long–Evans) depending on the period of their breeding since 1906 was carried out.

Material and methods: Data for the dynamics of growth and age periods of rats were used for calculations and general analysis.

Results: Acceleration in terms of age–weight indices for strain animals was found: in conditions of complete diets ad libitum the contemporary rats grew several times faster than the bred ones of 1906–1932. For random-bred rats only the tendency to acceleration was obtained. For more than a century, the Wistar males showed an inverse linear correlation between the breeding year and the age (in weeks) at the of the onset of puberty period (according to the Spearman test: r = –0.952; p = 0.00026; Pearson’s criterion: r = –0.950, p = 0.0003). There was also a direct correlation between the body mass of rats at the time of puberty onset and the year of their breeding (according to the Spearman test: r = 0.975; p = 0.005; Pearson criterion: r = 0.927; p = 0.023). The possible reasons for the acceleration of laboratory growth of rats, which are unlikely to be analogous to the factors presumably causing the known ‘growth acceleration’ in humans (changes in natural and artificial lighting, the effect of heterosis, improvement of socio-hygienic conditions, the growth of information flow, warming of the climate, change in the geomagnetic or radiation background, etc.) were discussed. Apparently, in addition to the probability of special and/or subconscious selection during century, the stimulation of rat acceleration may be explained by the ‘increase in living space and resources’ due to improved standards for keeping animals in the modern period (fewer animals in the cage or even an individual cage). In random-bred animals such standards can be apply for economic reasons to a lesser extent.

Conclusions: It is concluded that the physiological, anatomical, possibly behavioral and other standards and patterns for strain rats, including, possibly, its radiosensitivity, published even 30 years ago, and especially more than 50 years ago, should be cautiously transferred to the animals grown under present-day conditions.

Key words: random-bred and strain rats, Wistar, Long–Evans, acceleration of growth, pubertal period, body weight, radiosensitivity

REFERENCE
1. Koch EW. Die Akzeleration und Retardation des Wachstums und ihre Beziehungen zum Erreichbaren Hochstalter des Menscher. Dtsch Gesundheitsw. 1953;8(49):1492–501.
2. Volkova VG. Acceleration of the population. – Moscow: Publishing House of Moscow State University, 1988. 70 p. Russian.
3. Esakov SA. Age anatomy and physiology (course of lectures) – Izhevsk: VPU ‘Udmurt State University’, 2010. 196 p. Russian.
4. Lazinskaya OV. Morphological features of development of the cerebral cortex of rats during experimental acceleration. Dissertation PhD. (Candidate of Biological Sciences). Khabarovsk, 2016. 205 p. http://wwwimb.dvo.ru/misc/dissertations/images/dissertations/files/lazinskaya/Autoreferat_Lazinskaya.pdf (address data 14.05.2018). Russian.
5. Hatton TJ. How have Europeans grown so tall? Oxf Econ Pap. 2014;66(2):349–72. DOI: https://doi.org/10.1093/oep/gpt030.
6. Mills CA. Temperature influence over human growth and development. Hum Biol. 1950;22(1):71–4.
7. Vasilik PV. System analysis of the influence of the Earth’s magnetic field on human growth and development. Cybernetics and Computer Technology. 1979. Issue. 45. P. 12–21. Russian.
8. Kuzin VV, Nikityuk BA. Integrative biosocial anthropology. – Moscow: PHON, 1996. 220 p. Russian.
9. Luckey TD. Hormesis with Ionizing Radiation. – CRC Press, Boca Raton, FL, 1980. 222 p.
10. Planel H, Soleillhavoup JP, Tixador R, Center A, Croute F, Caratero C, Gaubin Y. Influence on cell proliferation of background radiation or exposure to very low chronic gamma radiation. Health Phys. 1987;52(5):571–8.
11. Kuzin AM. Radiation Hormesis // In: ‘Radiation Medicine’. Ed. by L.A. Ilyin. Volume 1. Theoretical Foundations of Radiation Medicine. – Moscow: Izd. AT. 2004. P. 861–871. Russian.
12. Calabrese EJ. Hormesis: a revolution in toxicology, risk assessment and medicine. Re-framing the dose-response relationship. EMBO Reports. 2004;5(Special issue):S37–S40. DOI: 10.1038/sj.embor.7400222.
13. Rozhdestvensky L. Medical-biological aspects of low levels radiation effects. The Bulletin on Atomic Energy (Moscow). 2004(3):43–48. Russian.
14. Tkach OV, Ryzhavskii BYa. Acceleration effect on rats brain development. Far Eastern Medical Journal (Khabarovsk). 2014. ¹ 3. P. 83–86. https://cyberleninka.ru/article/n/vliyanie-akseleratsii-na-pokazateli-razvitiya-golovnogo-mozga-krys (address data 14.05.2018). (In Russian. English Abstract.)
15. Donaldson HH. A comparison of the white rat with man in respect to the growth of the entire body // In: Boas Anniversary volume. N.Y.: G.E. Stechert & Co, 1906. P. 5–26.
16. Jackson CM, Lowrey LG. On the relative growth of the component parts (head, trunk, and extremities) and systems (skin, skeleton, musculature and viscera) of the albino rat. Anat Record. 1912;6(12):449–74. DOI: https://doi.org/10.1002/ar.1090061202.
17. Jackson CM. Postnatal growth and variability of the body and of the various organs in the albino rat. Amer J Anat. 1913;I5(1):1–68. DOI: https://doi.org/10.1002/aja.1000150102.
18. Jackson CM. Changes in the relative weights of the various parts, systems and organs of young albino rats held at constant body weight by underfeeding for various periods. J Exper Zool. 1915;19(2):99–156. DOI: https://doi.org/10.1002/jez.1400190202.
19. Hatai S. On the weights of the abdominal and the thoracic viscera, the sex glands, ductless glands and the eye balls of the albino rat (Mus norvegicus albinus) according to body weight. Am J Anat. 1913;15(1):87–119. DOI: https://doi.org/10.1002/aja.1000150104.
20. Donaldson HH. The rat. Reference tables and data for the albino rat (Mus norwegicus albinos) and the Norway rat (Mus norwegicus). Memoirs of The Wistar Institute of Anatomy and Biology. ¹ 6. Philadelphia, 1915. 300 p. http://www.biodiversitylibrary.org/item/62983#page/8/mode/1up (address data 14.05.2018).
21. Donaldson HH. The rat: data and reference tables. 2nd ed, revised and enlarged. American Anatomical Memoir of The Wistar Institute of Anatomy and Biology, no. 6, Philadelphia, 1924. 469 p. (212 tables, 72 charts, 13 figures, with bibliography comprising 2329 titles.). https://ia600306.us.archive.org/19/items/ratdatareference00dona/ratdatareference00dona.pdf (address data 14.05.2018).
22. King HD. Studies on inbreeding. I. The effects in inbreeding on the growth and variability in the body weight of the albino rat. J Exp Zool. 1918;26(1):1–54. DOI: https://doi.org/10.1002/jez.1400260102.
23. Freudenberger CB. A comparison of the Wistar albino and the Long–Evans hybrid strain of the Norway rat. Am J Anat. 1932;50(2):293–350.
24. Poiley SM. Growth tables for 66 strains and stocks of laboratory animals. Lab Anim Sci. 1972;22(5):758–79.
25. Bradford Hill A. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.
26. Hine GJ, Brownell GL. (eds) Radiation dosimetry. – New York: Academic Press. 1956. (Translated in Russian ed. by N.G. Gusev, KA. Truhanov. – Moscow, Izdatelstvo Inostrannaya Literatura, 1958. 760 p.)
27. Sikov MR. Effect of age on the iodine-131 metabolism and the radiation sensitivity of the rat thyroid. Radiat Res. 1969;38(2):449–59. DOI: 10.2307/3572786.
28. Xie T, Zaidi H. Age-dependent small-animal internal radiation dosimetry. Mol Imaging. 2013;12(6):364–75. DOI: 10.2310/7290.2013.00053.
29. Vlasov VV. Epidemiology. Second Edition, rev. – Moscow: GEOTAR-Media, 2006. 464 p. Russian.
30. Koterov AN, Ushenkova LN, Biryukov AP, Uyba VV. Risk of thyroid cancer after exposure to 131I: combined analysis of experimental and epidemiological data over seven decades. Part 1. Actual problems and statement of tasks for series of researches. Medical Radiology and Radiation Safety. 2016;61(6):25–49. (In Russian. English abstract.)
31. Koterov AN, Ushenkova LN, Zubenkova ES, Wainson AA, Biryukov AP. The relationship between the age of the most used laboratory animals (mice, rats, hamsters and dogs) and age of human: actuality for the age radiosensitivity problem and the analysis of published . Medical Radiology and Radiation Safety. 2018;63(1):5–27. DOI: https://doi.org/10.12737/article_5a82e4a3908213.56647014. (In Russian. English abstract.)
32. Ushenkova LN, Koterov AN, Biryukov AP. Pooled analysis of RET/PTC gene rearrangement rate in sporadic and radiogenic thyroid papillary carcinoma. Radiation biology. Radioecology. 2015;55(4):355–88. (In Russian. English abstract. PubMed.)
33. Friedenreich CM. Methods for pooled analyses of epidemiologic studies. Epidemiology. 1993;4(4):295–302.
34. Blettner M, Sauerbrei W, Schlehofer B, Scheuchenpflug T, Friedenreich C. Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol. 1999;28(1):1–9. DOI: 10.1093/ije/28.1.1.
35. Koolhaas JM. The laboratory rat // In: ‘The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals’, Eighth Edition. Ed. by R. Hubrecht & J. Kirkwood. University of Groningen. 2010. P. 311–326. DOI: 10.1002/9781444318777.ch22. http://onlinelibrary.wiley.com/doi/10.1002/9781444318777.ch22/summary (address data 14.05.2018).
36. Radiation Medicine. Ed. by L.A. Ilyin. Volume 1. Theoretical Foundations of Radiation Medicine. – Moscow: Izd. AT. 2004. 992 p. Russian.
37. Kovalevsky KL. Laboratory Animal Husbandry. – Moscow: Medgiz, 1958. 324 p. Russian.
38. Pass D, Freeth G. The rat. Anzccart News. 1993;6(4):1–4.
39. Dhungel S, Mukerjee B. Longitudinal study of the effect of chronic stresses on postnatal growth of the body and its constituent part in male albino rat. J Anat Soc India. 2007;56(3):18–24.
40. Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30.
41. Kokunin VA. Statistical processing of data from a small number of experiments. Ukraininan Journal of Biochemistry. 1975;47(6):776–91. Russian.
42. Kuramoto T, Nakanishi S, Ochiai M, Ochiai M, Nakagama H, Voigt B, Serikawa T. Origins of albino and hooded rats: implications from molecular genetic analysis across modern laboratory rat strains. PLoS ONE. 2012;7(8):e43059. DOI: 10.1371/journal.pone.0043059.
43. Zapadnuk IP, Zapadnuk VI, Zakharia EA, Zapadnuk BV. The Laboratory animals. Breeding, keeping, use in the experiment. 3rd ed. – Kiev: Vishcha school. Head Publishing, 1983. 383 p. Russian.
44. Smits BMG, Guryev V, Zeegers D, Wedekind D, Hedrich H.J, Cuppen E. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates. BMC Genomics. 2005;6:170 (10 p.). DOI: 10.1186/1471-2164-6-170.
45. Ivanov MB, Svidersky OA, Golovko AI, Shilov YuV, Nosov AV, Sidorov SP. The disturbance of physiological functions with norbornene intoxication. Biomedical Journal Medline ru. 2004.;5:45–50. http://www.medline.ru/public/art/tom5/art18.phtml (address data 14.05.2018). Russian.
46. Karlina MV, Pozharitskaya ON, Ivanova SA. Pharmacokinetics of circuminoids contained in Arthroflex preparation. Pharmaceutical Chemistry Journal. 2007;41(10):513–15. (In Russian. English abstract.)
47. Stewart CA. Growth of the body and the various organs of young albino rats after inanition for various periods. Biol Bull. 1916;31(1):16–51.
48. Taylor S, Poulson E. Long-term iodine deficiency in the rat. J Endocrinol. 1956;13:439–44.
49. Rat Genome Database. Site Medical College of Wisconsin ‘Bioinformatics Research Center’. ‘Gene Editing Rat Research Centre’. http://rgd.mcw.edu/ (address data 14.05.2018).
50. Okamura T, Suzuki S, Ogawa T, Junichi Kobayashi1, Kusuoka O, Hatayama K. et al. Background data for general toxicology parameters in RccHanTM:WIST rats at 8, 10, 19 and 32 weeks of Age. J Toxicol Pathol. 2011;24:195–205. DOI: 10.1293/tox.24.195.
51. Ferry EL. The rate of growth of the albino rat. Anat Rec. 1913;7(12):433–41.
52. King HD. On the weight of the albino rat at birth and the factors that influence it. Anat Rec. 1915;9(3):213–31. DOI: https://doi.org/10.1002/ar.1090090302.
53. Goodrick CL. Effects of long-term voluntary wheel exercise on male and female Wistar rat. I. Longevity, body weight and metabolic rate. Gerontology. 1980;26(1):22–33. DOI: 10.1159/000212390.
54. Azooz OG, Farthing MJG, Savage MO, Ballinger AB. Delayed puberty and response to testosterone in a rat model of colitis. Am J Physiol Regulatory Integrative Comp Physiol. 2001;281(5):R1483–R1491. DOI: 10.1152/ajpregu.2001.281.5.R1483.
55. Coelho MS, Passadore MD, Gasparetti AL, Bibancos T, Prada PO, Furukawa LL, et al. High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats. Nutr Metab Cardiovasc Dis. 2006;16(2):148–55. DOI: 10.1016/j.numecd.2005.09.001.
56. Wilson CR, Tran MK, Salazar KL, et al. Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Biochem J. 2007;406(3):457–67. DOI: 10.1042/BJ20070392.
57. Silva JVA, Lins AMJAA, Amorim JAA, Pinto CF, Deiro TBJ, Oliveira JRM, et al. Neonatal administration of fluoxetine decreased final Sertoli cell number in Wistar rats. Int J Morphol. 2008;26(1):51–62. DOI: http://dx.doi.org/10.4067/S0717-95022008000100009.
58. Caimari A, Oliver P, Rodenburg W, Keijer J, Palou A. Slc27a2 expression in peripheral blood mononuclear cells as a molecular marker for overweight development. Int J Obes (Lond). 2010;34(5):831–9. DOI: 10.1038/ijo.2010.17.
59. Salim EI. Cancer chemopreventive potential of volatile oil from black cumin seeds, Nigella sativa L, in a rat multi-organ carcinogenesis bioassay. Oncol Lett. 2010;1(5):913–24. DOI: 10.3892/ol_00000162.
60. Umeoka E.H, Garcia S.B, Antunes-Rodrigues J, Elisa L.L.K, Garsia-Cairasco N. Functional characterization of the hypothalamic-pituitary-adrenal axis of the Wistar Audiogenic Rat (WAR) strain. Brain Res. 2011;1381:141–7.
61. Alimba CG, Bakare AA, Aina OO. Liver and kidney dysfunction in Wistar rats exposed to municipal landfill leachate. Resources and Environment. 2012;2(4):150–63. DOI: 10.5923/j.re.20120204.04.
62. Clemens LE, Jansson EK, Portal E, Riess O, Nguyen HP. A behavioral comparison of the common laboratory rat strains Lister Hooded, Lewis, Fischer 344 and Wistar in an automated homecage system. Genes Brain Behav. 2014;13(3):305–21. DOI: 10.1111/gbb.12093.
63. Kozma RH, Alves EM, Barbosa-de-Oliveira VA, Lopes FD, Guardia RC, Buzo H.V. et al. A new experimental model of cigarette smoke-induced emphysema in Wistar rats. J Bras Pneumol. 2014;40(1):46–54. DOI: 10.1590/S1806-37132014000100007.
64. Patel SD. Effect of enriched environment on reproductive performance and body weight gain in Wistar rats. J Lab Anim Sci. 2014;1(2). http://www.lasaindia.in/journal.php (address data 14.05.2018).
65. Teixeira FB, Da Silva Santana LN, Bezerra FR, Bezerra FR, De Carvalho S, Fontes-Junior EA, et al. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress. PLoS ONE. 2014;9(6):e101074. DOI: 10.1371/journal.pone.0101074.
66. Santiago HA, De Pierro LR, Reis RM, Caluz AGRE, Ribeiro VB, Volpon JB. Allometric relationships among body mass, MUZZLE-tail length, and tibia length during the growth of Wistar rats. Acta Cir Bras. 2015;30(11):743–8. DOI: 10.1590/S0102-865020150110000004.
67. Ghoneum MH, Badr El-Din NK, Abdel Fattah SM. Hydroferrate fluid, MRN-100, provides protection against chemical-induced gastric and esophageal cancer in Wistar rats. Int J Biol Sci. 2015;11(3):295–303. DOI: 10.7150/ijbs.10586.
68. Zhang S, Cheng X, Wang Y, Fan J, Li R, Zhou S. et al. Ninety day toxicity and toxicokinetics of fluorochloridone after oral administration in rats. Int J Environ Res Public Health. 2015;12(5):4942–66. DOI: 10.3390/ijerph120504942.
69. Debebe M, Afework M, Makonnen E, Debella A, Geleta B, Gemeda N. Evaluations of biochemical, hematological and histopathological harameters of subchronic administration of ethanol extract of Albizia Gummifera Seed in albino Wistar rat. J Clin Toxicol. 2017;7:337. DOI: 10.4172/2161-0495.1000337.
70. Animal Resource Centre. Rat and Mice Weights. http://www.arc.wa.gov.au/?page_id=125 (address data 14.05.2018.)
71. Charles River Research Models and Services (Catalog). Charles River Laboratories Japan Inc, 2016. 49 p. http://www.crj.co.jp/cms/cmsrs/pdf/product/2016_RMS_CRJ-Catalog_English.pdf (address data 14.05.2018).
72. CLEA Japan Inc. Experimental Animals. Closed Colonies Rat. 1999–2012. http://www.clea-japan.com/en/animals/animal_e.html (address data 14.05.2018).
73. Harlan Laboratories. Canadian Product Guide. Research Models and Services. Effective January 1, 2011. 56 p.
74. Hilltop Lab Anim Inc. http://hilltoplabs.com/public/wistar.html (address data 14.05.2018).
75. Labat C, Cunha RSA, Challande P, Safar ME, Lacolley P. Respective contribution of age, mean arterial pressure, and body weight on central arterial distensibility in SHR. Am J Physiol Heart Circ Physiol. 2006;290:H1534–H1539. DOI: 10.1152/ajpheart.00742.2005.
76. Scanbur Improving Life Sciences. Research Models and Services. http://www.scanburresearch.com/media/34971/RMS-CRL-2017_SCB_WEB.pdf (address data 14.05.2018).
77. The Russian National Center for Genetic Resources of Laboratory Animals based on the SPF-vivarium of the Institute of Ecology and Genetics of the SB RAS. http://spf.bionet.nsc.ru/spf-strains/ (address data 14.05.2018). Russian.
78. Nursery of laboratory animals ‘Puschino’. Outbred rats: SD (Sprague Dawley), Wistar. http://www.spf-animals.ru/animals/rats/outbred/ (address data 14.05.2018). Russian.
79. Grjibovsky ÀÌ. Analysis of three and more independent group of quantitative data. Human Ecology. 2008(3):50–8. Russian.
80. Charles River Research Models and Services (Catalog). Charles River Laboratories Japan Inc, 2016. 49 p. http://www.crj.co.jp/cms/cmsrs/pdf/product/2016_RMS_CRJ-Catalog_English.pdf (address data 14.05.2018).
81. Nutrient Requirements of the Laboratory Rat // In: ‘Nutrient Requirements of Laboratory Animals’. Fourth Revised Edition, 1995. Subcommittee on Laboratory Animal Nutrition. Committee on Animal Nutrition Board on Agriculture. National Research Council. – Washington, D.C.: National Academy Press. 1995. P. 11–79. https://www.nap.edu/read/4758/chapter/4 (address data 14.05.2018).
82. Moran TH, Katz LF, Plata-Salaman CR, Schwartz GJ. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol. 1998;274(3 Pt 2):R618–R625. https://pdfs.semanticscholar.org/7fdd/d907e5c63990188d6106a015db2bef3316e1.pdf (address data 14.05.2018).
83. Bi S, Chen J, Behles RR, Hyun J, Kopin AS, Moran TH. Differential body weight and feeding responses to high-fat diets in rats and mice lacking cholecystokinin 1 receptors. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R55–R63. DOI: 10.1152/ajpregu.00002.2007.
84. Chao P-T, Terrillion CE, Moran TH, Bi S. High-fat diet offsets the long-lasting effects of running-wheel access on food intake and body weight in OLETF rats. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1459–R1467. DOI: 10.1152/ajpregu.00517.2010.
85. Turner KM, Burne THJ. Comprehensive behavioural analysis of Long–Evans and Sprague–Dawley rats reveals differential effects of housing conditions on tests relevant to neuropsychiatric disorders. PLoS One. 2014;9(3):e93411. DOI: 10.1371/journal.pone.0093411.
86. Kawagoe N, Kano O, Kijima S, Tanaka H, Takayanagi M, Urita Y. Investigation of metabolism of exogenous glucose at the early stage and onset of diabetes mellitus in Otsuka Long–Evans Tokushima fatty tats using [1, 2, 3-13C] glucose breath tests. PLoS ONE. 2016;11(8):e0160177. DOI: 10.1371/journal.pone.0160177.
87. Envigo. Long–Evans rat. http://www.envigo.com/products-services/research-models-services/models/research-models/rats/outbred/long-evans-(blue-spruce)-outbred-rat/ (address data 14.05.2018).
88. Janvier Labs. Nordic Country. Price Catalogue. 2017. 24 p. http://www.helsinki.fi/kek/pdf/CATALOGUE_JANVIERLABS_NORDIC_COUNTRIES_2017.pdf (address data 14.05.2018).
89. Karli P. The Norway rat’s killing response to the white mouse: an experimental analysis // Behaviour. 1956;10(1/2):81–103.
90. Long JA, Evans AM. On the attainment of sexual maturity and the character of the first estrous cycle in the rat. Anat Rec. 1920;18:244.
91. Sengupta P. A scientific review of age determination for a laboratory rat: how old is it in comparison with human age? Biomedicine International. 2011;2:81–9. http://www.bmijournal.org/index.php/bmi/article/view/80 (address data 14.05.2018).
92. Slonaker JR. The effect of pubescence, oestruation and menopause of the voluntary activity in the albino rat. Am J Physiol. 1924;68:294–315.
93. Engelbregt MJ, Houdijk ME, Popp-Snijders C, Delemarre-van de Waal HA. The effects of intra-uterine growth retardation and postnatal undernutrition on onset of puberty in male and female rats. Pediatr Res. 2000;48(6):803–7. DOI: 10.1203/00006450-200012000-00017.
94. Laboratory rats // In: Site ‘Canadian Council on Animal Care in science’. Guide to the Care and Use of Experimental Animals, Volume 2. 1984. https://www.ccac.ca/Documents/Standards/Guidelines/Vol2/rats.pdf (address data 14.05.2018).
95. Kohn DF, Clifford CB. Biology and diseases of rats // In: ‘Laboratory animal medicine’. 2nd. Ed. by J.G. Fox, L.C. Anderson, F.M. Loew, F.W. Quimby. – New York: Academic Press, 2002. P. 121–165.
96. Korenbrot CC, Huhtaniemi IT, Weiner RI. Preputial separation as an external sign of pubertal development in the male rat. Biol Reprod. 1977;17(2):298–303. DOI: https://doi.org/10.1095/biolreprod17.2.298.
97. Chappel SC, Ramaley JA. Changes in the isoelectric focusing profile of pituitary follicle-stimulating hormone in the developing male rat. Biol Reprod. 1985;32(3):567–73.
98. Martin B, Ji S, Maudsley S, Mattson MP. ‘Control’ laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci. USA. 2010;107(14):6127–33. DOI: 10.1073/pnas.0912955107.
99. The Laboratory Rat. Second edition. Ed. by M.A. Suckow, S.H. Weisbroth, C.L. Franklin. – Amsterdam, Boston, Heidelberg, London, New York, Oxford, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier, 2006. 912 p.
100. Yudin TI. (Professor of Kazan University). Eugenics. – Moscow: Publishing of M. and S. Sabashnikov, 1928. 288 p.
101. Ryzhavskii BYa, Tkach OV. The development of the brain of rats under acceleration: morphological features and patterns. Far Eastern Medical Journal (Khabarovsk). 2014(3):83–6. https://cyberleninka.ru/article/n/razvitie-golovnogo-mozga-krys-pri-akseleratsii-morfologicheskie-osobennosti-i-zakonomernosti (address data 14.05.2018). (In Russian. English Abstract.)
102. Engle ET, Grafts RC, Zeithaml CE. First estrus in rats in relation to age, weight, and length. Proc Soc Exp Biol Med. 1937;37:427–32.
103. Blunn CT. The age of rats at sexual maturity as determined by their genetic constitution. Anat Rec. 1939;74(2):199–213. DOI: https://doi.org/10.1002/ar.1090740209.
104. ARRP Guideline 20: Guidelines for the Housing of Rats in Scientific Institutions. Animal Research Review Panel, Sydney. 2007. 74 p. https://www.animalethics.org.au/__data/assets/pdf_file/0014/222512/housing-rats-scientific-institutions.pdf (Äàòà îáðàùåíèÿ 14.05.2018).

For citation: Koterov AN, Ushenkova LN, Zubenkova ES, Wainson AA, Andrianova IE, Lukyianova SN, Lyaginskaya AM, Maltcsev VN, Ilyin LA, Samoylov AS, Uiba VV. Acceleration of laboratory rats: synthetic study of data for the century in the aspect of possible relationship with radiosensitivity. Medical Radiology and Radiation Safety. 2018;63(4):5-20. (Russian).

DOI: 10.12737/article_5c0b88579b10a6.86596118

PDF (RUS) Full-text article (in Russian)