Medical Radiology and Radiation Safety. 2020. Vol. 65. No. 2. P. 62–67

P.O. Rumiantsev1, A.A. Trukhin1,2, K.A. Sergunova3, Ya.I. Sirota1, N.M. Makarova1,2, А.А. Bubnov2, D.S. Semenov3, E.S. Ahmad3

Phantoms for Nuсlear Medicine

1 National Medical Research Centre of Endocrinology, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
2 National Research Nuclear University MEPhI, Moscow, Russia
3 Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Moscow Healthcare Department, Moscow, Russia

E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

The nuclear medicine phantom development is based on the step by step description of the computational and experimental biological object model. Computational phantoms are used for geometry of the object description and simulate physics of particle interactions with matter, while experimental phantoms are used for quality control tests and standardization of functional research protocols. Common examples are the dosimetry planning of radionuclide therapy and post-therapeutic scintigraphy with 131I. This review provides a list of methods for computational and experimental phantoms. Examples of existing phantoms created for the nuclear medicine tasks are also given.

Key words: nuclear medicine, theranostics, phantom, mathematical phantom, experimental phantom, 3D print, quantitative dosimetry

For citation: Rumiantsev PO, Trukhin AA, Sergunova KA, Sirota YaI, Makarova NM, Bubnov АА, Semenov DS, Ahmad ES. Phantoms for Nuсlear Medicine. Medical Radiology and Radiation Safety. 2020;65(2):62-7. (In Russ.).

DOI: 10.12737/1024-6177-2020-65-2-62-67

References

  1. Larry A. The Phantoms of Medical and Health Physics. Springer. 2014; 290.
  2. Sidney Y. Handbook of Materials Modeling. Springer. 2005; 2965.
  3. Климанов ВА. Радиобиологическое и дозиметрическое планирование лучевой и радионуклидной терапии. Часть 1: учеб. пособие для вузов.— М.: НИЯУ МИФИ, 2011. 604 c. [Klimanov VA. Radiobiological and Dosimetric Planning in Radionuclide Therapy. Part 1: Student book. Moscow. 2011; 604. (in Russ.)].
  4. Camoni L. Quality Control of Nuclear Medicine Instrumentation and Protocol Standardisation. EANM 2017; 168.
  5. Xu XG. Handbook of Anatomical Models for Radiation Dosimetry. CRC Press. 2009; 757.
  6. Bailey L, Willowson K. An Evidence-Based Review of Quantitative SPECT Imaging and Potential Clinical Applications. J Nucl Med. 2013;54(83):9.
  7. Jan S, Santin G, Strul D. Users Guide V8.0 Introduction [internet source] URL:http://wiki.opengatecollaboration.org/index.php?title=Users_Guide_V8.0&oldid=910.
  8. Sun R, Limkin EJ, Dercle L. Computational medical imaging (radiomics) and potential for immuno-oncology. Journal de la Societe francaise de radiotherapie oncologique. 2017; 648-54.
  9. International Atomic Energy Agency. Quality Assurance for SPECT Systems. IAEA Human Health Series. Vienna, Austria. 2009;6:263.
  10. International Atomic Energy Agency. Planning a Clinical PET Centre. IAEA Human Health Series. Vienna, Austria. 2010;11:160.
  11. Busemann E, Płachcínska A, Britten A. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37:662-71.
  12. International Atomic Energy Agency. Clinical PET/CT Atlas: A Casebook of Imaging in Oncology. IAEA Human Health Series. IAEA. 2015; 201.
  13. Khalil M, Tremoleda J, Bayomy T. Molecular SPECT Imaging: An Overview. Int J Mol Imaging. 2011; 15.
  14. Арсвольд Д. Эмиссионная томография: основы ПЭТ и ОФЭКТ. Учеб. пособие для выпускников вузов. М.: Техносфера, 2009. 599 с. [Arsvold D. Emision tomography: basics of PET and SPECT. Technosphere. 2009; 599. (in Russ.)].
  15. Agostinelli AG, Smolen SD, Nath RA. New water-equivalent plastic for dosimetry calibration. Med Phys. 1992;19:774.
  16. Tello VM, Tailor RC, Hanson WF. How water equivalent are water-equivalent plastics for output calibration of photon and electron beams? Med Phys. 1995;22:1177-89.
  17. Селиванов МГ, Александрук АГ, Четвериков СФ, Пономарев АС. О возможности использования пластинчатого тканеэквивалентного фантома для верификации дозового распределения в лучевой терапии. Казань: Бук. 2017:30-3. [Selivanov MG, Aleksandruk AG, Chetverikov SF. On the possibility of using a lamellar tissue equivalent phantom to verify the dose distribution in radiation therapy. Buk. 2017: 30-3. (in Russ.)].
  18. Whole Body Phantom PBU-60 [internet source]. URL: https://www.kyotokagaku.com/products/detail03/ph-2b.html.
  19. Modular Full Body X-Ray Phantom [internet source]. URL: https://www.erler-zimmer.de/shop/en/medical-simulators/x-ray-ct/10180/modular-full-body-x-ray-phantom.
  20. Anthtopomorhic phantoms [internet source]. URL: http://rsdphantoms.com/rdanth.htm.
  21. Mitsouras D, Liacouras P, Imanzadeh A. Medical 3D Printing for the Radiologist. Radiographics In Press. 2015;7:1965-87.

PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 03.06.2019.

Accepted for publication: 12.03.2020.