Медицинская радиология и радиационная безопасность. 2021. Том 66. № 5. C.23–32

Ильин Л.А.1, Самойлов А.С.1, Цовьянов А.Г.1, Шинкарев С.М.1, Шандала Н.К.1, Ганцовский П.П.1, Карев А.Е.1, Кухта Б.А.1, Симаков А.В.1, Клочков В.Н.1, Коренков И.П.1, Лягинская А.М.1, Паринов О.В.1, Соломатин В.М.2, Изместьев К.М.3

РАДИАЦИОННО-ГИГИЕНИЧЕСКИЕ ИССЛЕДОВАНИЯ ЭКСПЕРИМЕНТАЛЬНОГО ПРОИЗВОДСТВА СМЕШАННОГО НИТРИДНОГО УРАН-ПЛУТОНИЕВОГО ТОПЛИВА НА АО «СХК». Часть 1: Методы и результаты

1Федеральный медицинский биофизический центр имени А.И. Бурназяна ФМБА России, Москва. 

2 АО «Прорыв», Москва

3 АО «СХК», Северск

Контактное лицо: Александр Георгиевич Цовьянов: This email address is being protected from spambots. You need JavaScript enabled to view it.

РЕФЕРАТ

Цель: Представить методы и результаты исследований факторов радиационного воздействия на персонал, участвующий в изготовлении смешанного нитридного уран-плутониевого (СНУП) топлива на комплексных экспериментальных установках КЭУ-1 и КЭУ-2 АО «СХК».

Материал и методы: На основе изучения динамики мощности амбиентного эквивалента дозы (МАЭД) фотонного и нейтронного излучений на рабочих местах КЭУ-1 и КЭУ-2, инструментального индивидуального дозиметрического контроля эквивалентных доз облучения персонала выявлены закономерности формирования доз внешнего облучения. Для оценки ингаляционного поступления и возможных доз внутреннего облучения проведены исследования физико-химических свойств радиоактивных аэрозолей.

Результаты: Установлено, что основными источниками проникающих излучений в помещениях КЭУ-1 являются боксы, где происходит прессование таблеток, дробление шашек и бракованных таблеток, а также временное хранение продукции. Наибольшие значения МАЭД зарегистрированы в тех боксах, в которых излучение сформировано загрязнением, обусловленным прошлой эксплуатацией, и не связано с фабрикацией СНУП топлива. Выявлен существенный вклад нейтронного излучения в формирование индивидуальных доз персонала, который на отдельных рабочих местах КЭУ-1 превышал вклад гамма-излучения. На КЭУ-2 мощным источником внешнего излучения являлась проходящая над помещениями нефункционирующая труба вытяжной вентиляции. Оценка вклада гамма-излучения со стороны вытяжной трубы во внешнее облучение персонала достигала 85% на отдельных рабочих местах. Исследования физико-химических свойств радиоактивных аэрозолей показали высокую реакционную способность СНУП соединений, приводящую к мгновенному окислению торакальной фракции аэрозолей СНУП топлива при контакте с воздушной средой. Сложный морфологический и дисперсный состав аэрозольных частиц в совокупности со сложным химическим составом, обусловленным процессами старения аэрозолей, может привести к кардинальному отличию процессов биокинетики СНУП аэрозолей, процесса дозообразования и, следовательно, степени радиологической опасности по сравнению с принятыми в моделях МКРЗ для U и Pu.

Результаты проведенных радиационно-гигиенических исследований носят предварительный характер, поскольку объектом исследований являлась экспериментальная установка, на которой проводилась отработка новой технологии производства СНУП топлива. Апробированные на этих экспериментальных установках инструментально-методические подходы по оценке факторов радиационного воздействия на персонал в дальнейшем будут использованы для проведения аналогичных исследований при опытно-промышленной эксплуатации новых модулей фабрикации-рефабрикации СНУП топлива.

Ключевые слова: смешанное нитридное уран-плутониевое топливо, радиационная безопасность, комплексная экспериментальная установка, гамма и нейтронное облучение, радиоактивные аэрозоли

Для цитирования: Ильин Л.А., Самойлов А.С., Цовьянов А.Г., Шинкарев С.М., Шандала Н.К., Ганцовский П.П., Карев А.Е., Кухта Б.А., Симаков А.В., Клочков В.Н., Коренков И.П., Лягинская А.М., Паринов О.В., Соломатин В.М., Изместьев К.М. Радиационно-гигиенические исследования экспериментального производства смешанного нитридного уран-плутониевого топлива на АО «СХК». Часть 1: Методы и результаты // Медицинская радиология и радиационная безопасность. 2021. Т. 66. № 5. С.23–32.

DOI: 10.12737/1024-6177-2021-66-5-23-32

Список литературы

1. Рачков В.И., Адамов Е.О. Научно-технические проблемы ЗЯТЦ двухкомпонентной ЯЭ и их решение в ПН «Прорыв». В сб. докладов отраслевой конференции по теме «Замыкание топливного цикла ядерной энергетики на базе реакторов на быстрых нейтронах» 11-12 октября 2018 г. г. Томск, с.6 – 15.

2. Стратегия развития атомной энергетики России в первой половине XXI века. Основные положения. – М.: Минатом России, 2000. – 26 с.

3. Проект «Прорыв» – технологический фундамент для крупномасштабной ядерной энергетики / Адамов Е.О., Алексахин Р.М., Большов Л.А., Дедуль А.В., Орлов В.В., Першуков В.А., Рачков В.И., Толстоухов Д.А., Троянов В.М. // Известия Российской академии наук. Энергетика. – 2015. – № 1. – с.5 – 13.

4. Адамов Е.О., Орлов В.В., Рачков В.И., Слесарев И.С., Хомяков Ю.С.Ядерная энергетика с естественной безопасностью: смена устаревшей парадигмы, критерии // Известия Российской академии наук. Энергетика. – 2015. – № 1. – с.13 – 29.

5. Shultis, J. Kenneth; Richard E. Faw. стр. 141, табл. 6.2 // Fundamentals of Nuclear Science and Engineering. — CRC Press, 2008.

6. Physics and Fuel Performance of Reactor-Based Plutonium Disposition. Workshop Proceedings - Paris, France, 28-30 September 1998. Nuclear Energy Agency.

7. Хабахпашев А.Г. Спектр нейтронов Po-α-O источника. Атомная энергия. Том 7, вып. 1. – 1959.

8. ICRP, 2008. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP 38 (3).

9. Алексеев С.В., Зайцев В.А. Нитридное топливо для ядерной энергетики: Москва: Техносфера, 2013.

10. Murata T. et al., “Evaluation of the (α, xn) Reaction Data for JENDL/AN-2005,” JAEA-Research 2006-052 (Jul 2006) from URL https://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html.

11. Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 3 и 4, М., 1969.

12. Бондарьков М.Д., Желтоножская М.В., Максименко А.М., Садовников Л.В. Определение содержания изотопов плутония в чернобыльских образцах по характеристическому Lx-излучению урана. ПРОБЛЕМИ БЕЗПЕКИ АТОМНИХ ЕЛЕКТРОСТАНЦІЙ І ЧОРНОБИЛЯ ВИП. 2 2005 URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128042/17-Bondarkov.pdf?sequence=1

13. Andersen, A. A. 1966. A Sampler for Respiratory Health Hazard Assessement. Am. Ind. Hyg. Assoc. J., 27: 160–165.

14. ICRP. Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 4, Inhalation Dose Coefficients. ICRP Publication 71.Annals of the ICRP, Vol.25, № 3-4, 1995. Elsevier Science Ltd., Oxford.

15. Барановская Н.В., Игнатова Т.Н., Рихванов Л.П. Уран и торий в органах и тканях человека, Вестник томского государственного университета № 339, 2010, стр.182-188.

 PDF (RUS) Полная версия статьи

 

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Финансирование. Исследование не имело спонсорской поддержки.

Участие авторов. Cтатья подготовлена с равным участием авторов.

Поступила: 23.12.2020.

Принята к публикации: 20.01.2021.