Medical Radiology and Radiation Safety. 2022. Vol. 67. № 2

Problems of Scintigraphic Diagnosis of Inflammatory Heart Disease and Methods of Their Correction

I.N. Ilyushenkova, Zh.Zh. Anashbaev, E.V. Popov, S.I. Sazonova

Tomsk National Research Medical Center, Tomsk, Russia

Contact person: I.N. Ilyushenkova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

The present review is devoted to the issues of topical diagnostics of inflammatory myocardial diseases, problems that arise at the stages of primary data collection, processing and interpretation of results, as well as ways to solve them. The paper describes the basic principles of indication of focal pathological inclusions of radiopharmaceuticals by single-photon emission computed tomography and current approaches used in world practice to eliminate motor and respiratory artifacts that affect the diagnostic effectiveness of molecular imaging. Literature search was performed using electronic bibliographic databases, such as PubMed, E-library, Medline, GoogleShcolar.

Keywords: inflammation, scintigraphy, motion correction, respiratory correction, SPECT/CT, myocarditis.

For citation: Ilyushenkova IN, Anashbaev ZhZh, Popov EV, Sazonova SI. Problems of scintigraphic diagnosis of inflammatory heart disease and methods of their correction. Medical Radiology and Radiation Safety. 2022;67(2):32-37. (In Russian) doi: 10.33266/1024-6177-2022-67-2-32-37

References

1. Puntmann V.O., Zeiher A.M., Nagel E. T1 and T2 Mapping in Myocarditis: Seeing Beyond the Horizon of Lake Louise Criteria and Histopathology. Expert Rev Cardiovasc Ther. 2018;16;5:319-330. DOI: 10.1080/14779072.2018.1455499. 

2. Lishmanov Yu.B., Sazonova S.I., Chernov V.I., et al. The Scintigraphic Diagnosis of Inflammatory Heart Disease. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2004;49;2:59-66 (In Russian).

3. Kircher M., Lapa C. Novel Noninvasive Nuclear Medicine Imaging Techniques for Cardiac Inflammation. Curr. Heart Fail. Rep. 2017;10;2:1-6. DOI: 10.1007/s12410-017-9400-x. 

4. Sazonova S.I., Lishmanov Yu.B., Proskokova I.Yu. Scintigraphic Imaging of Inflammatory Focuses in the Heart. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2011;56;5:31-36 (In Russian). 

5. Kitahara K., Suzuki S., Takayama Y., et al. New Color Imaging of 99mTc-Pyrophosphate and 201Tl-Chloride Dual Isotope Single Photon Emission Computed Tomography in Acute Myocarditis. Kaku Igaku. 1989;26;6:773-779. 

6. Ando H., Fukuyama T., Mitsuoka W., et al. Influence of Downscatter in Simultaneously Acquired Thallium-201/Technetium-99m-PYP SPECT. J. Nucl. Med. 1996;37;5:781-785. 

7. Wu M.C., Tsai C.T., Lin H.C., et al. Thallium-201 is Comparable to Technetium-99m-Sestamibi for Estimating Cardiac Function in Patients with Abnormal Myocardial Perfusion Imaging. Kaohsiung J. Med. Sci. 2015;31;11:562-567. DOI: 10.1016/j.kjms.2015.09.002. PubMed PMID: 26678935.

8. Sazonova S.I., Ilyushenkova Yu.N., Lishmanov Yu.B. The Technique of Radionuclide Studies of Inflammatory Processes in the Heart. Sibirskiy Meditsinskiy Zhurnal = The Siberian Medical Journal. 2015;30;4:32-35 (In Russian).

9. Sazonova S.I., Ilyushenkova Yu.N., Lishmanov Yu.B., et al. Assessment of Radiological Techniques Application Possibility for Non-Invasive Diagnostics of Latent Inflammatory Processes in Myocardium in Patients with Atrial Fibrillation. Ann. Nucl. Med. 2016;30;10:738-748. DOI: 10.1007/s12149-016-1120-9. 

10. Hasegawa B.H., Stebler B., Rutt B.K., et al. A Prototype High-Purity Germanium Detector System with Fast Photon-Counting Circuitry for Medical Imaging. Med. Phys. 1991;18;5:900-909.
DOI: 10.1118/1.596606. 

11. Hutton B.F., Occhipinti M., Kuehne A., et al. Development of Clinical Simultaneous SPECT/MRI. Br. J. Radiol. 2018;91;1081:20160690. DOI: 10.1259/bjr.20160690. 

12. Livieratos L. Technical Pitfalls and Limitations of SPECT/CT. Semin. Nucl. Med. 2015;45;6:530-540. DOI: 10.1053/j.semnuclmed.2015.06.002. 

13. Israel O., Pellet O., Biassoni L., et al. Two Decades of SPECT/CT - the Coming of Age of a Technology: An Updated Review of Literature Evidence. Eur. J. Nucl. Med. Mol. Imaging. 2019;46;10:1990-2012.
DOI: 10.1007/s00259-019-04404-6. 

14. Erba P.A., Glaudemans A.W., Veltman N.C., et al. Image Acquisition and Interpretation Criteria for 99mTc-HMPAO-Labelled White Blood Cell Scintigraphy: Results of a Multicentre Study. Eur. J. Nucl. Med. Mol. Imaging. 2014;41;4:615-623. DOI: 10.1007/s00259-013-2631-4. 

15. Erba P.A., Leo G., Sollini M., et al. Radiolabelled Leucocyte Scintigraphy Versus Conventional Radiological Imaging for the Management of Late, Low-Grade Vascular Prosthesis Infections. Eur. J. Nucl. Med. Mol. Imaging. 2014;41;2:357-368. DOI: 10.1007/s00259-013-2582-9. 

16. Erba P.A., Lancellotti P., Vilacosta I., et al. Recommendations on Nuclear and Multimodality Imaging in IE and CIED Infections. Eur. J. Nucl. Med. Mol. Imaging. 2018;45;10:1795-1815. DOI: 10.1007/s00259-018-4025-0.

17. Mochula A.V., Zavadovskiy K.V., Andreyev S.L., et al. Dynamic Single-Photon Emission Computed Tomography as a Method of Identification of Multivessel Coronary Artery Disease. Vestnik Rentgenologii i Radiologii = Journal of Radiology and Nuclear Medicine. 2016;97;5:289-295. DOI: 10.20862/0042-4676-2016-97-5-289-295 (In Russian).

18. Gomes A., Glaudemans A.W.J.M., Touw D.J., et al. Diagnostic Value of Imaging in Infective Endocarditis: a Systematic Review. Lancet Infect Dis. 2017;17;1:e1-e14. DOI: 10.1016/S1473-3099(16)30141-4. 

19. Ilyushenkova J., Sazonova S., Zavadovsky K., et al. Diagnostic Efficacy of Cardiac Scintigraphy with 99mTc-Pyrophosphate for Latent Myocardial Inflammation in Patients with Atrial Fibrillation. Cardiol. Res. Pract. 2020;2020:5983751. DOI: 10.1155/2020/5983751. 

20. Polycarpou I., Chrysanthou-Baustert I., Demetriadou O., et al. Impact of Respiratory Motion Correction on SPECT Myocardial Perfusion Imaging Using a Mechanically Moving Phantom Assembly with Variable Cardiac Defects. J. Nucl. Cardiol. 2017;24;4:1216-1225. DOI: 10.1007/s12350-015-0323-0.

21. Slomka P.J., Nishina H., Berman D.S., et al. «Motion-Frozen» Display and Quantification of Myocardial Perfusion. J. Nucl. Med. 2004;45;7:1128-1134. 

22. O’Dell W.G., Moore C.C., Hunter W.C., et al. Three-Dimensional Myocardial Deformations: Calculation with Displacement Field Fitting to Tagged MR Images. Radiology. 1995;195;3:829-835. DOI: 10.1148/radiology.195.3.7754016. 

23. Livieratos L., Rajappan K., Stegger L., et al. Respiratory Gating of Cardiac PET Data in List-Mode Acquisition. Eur. J. Nucl. Med. Mol. Imaging. 2006;33;5:584-588. DOI: 10.1007/s00259-005-0031-0. 

24. Wang Y., Riederer S.J., Ehman R.L. Respiratory Motion of the Heart: Kinematics and the Implications for the Spatial Resolution in Coronary Imaging. Magn. Reson. Med. 1995;33;5:713-719. DOI: 10.1002/mrm.1910330517.

25. Okuda K., Sakimoto S., Fujii S., et al. Influence of the Pixel Sizes of Reference Computed Tomography on Single-Photon Emission Computed Tomography Image Reconstruction Using Conjugate-Gradient Algorithm. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73;10:1039-1044. DOI: 10.6009/jjrt.2017_JSRT_73.10.1039 (In Japan). 

26. Zhang D., Ghaly M., Mok G.S.P. Interpolated CT for Attenuation Correction on Respiratory Gating Cardiac SPECT /CT — A Simulation Study. Med. Phys. 2019;46;6:2621-2628. DOI: 10.1002/mp.13513. 

27. Depuey E.G., Mahmarian J.J., Miller T.D., et al. Patient-Centered Imaging. J. Nucl. Cardiol. 2012;19;2:185-215. DOI: 10.1007/s12350-012-9523-z. 

28. Slomka P.J., Berman D.S., Germano G. New Imaging Protocols for New Single Photon Emission CT Technologies. Curr. Heart. Fail. Rep. 2010;3;3;162-170. DOI: 10.1007/s12410-010-9021-0. 

29. Rubeaux M., Doris M.K., Alessio A., Slomka P.J. Enhancing Cardiac PET by Motion Correction Techniques. Curr. Cardiol. Rep. 2017;19;2:14. DOI: 10.1007/s11886-017-0825-2. 

30. Zavadovskiy K.V., Mishkina A.I., Mochula A.V., et al. The Method for Correction of Motion Artefacts to Improve Myocardial Perfusion Imaging. Rossiyskiy Elektronnyy Zhurnal Luchevoy Diagnostiki = Russian Electronic Journal of Radiology. 2017;7;2:56-64.
DOI: 10.21569/2222-7415-2017-7-2-56-64 (In Rassian).

31. Kovalski G., Keidar Z., Frenkel A., et al. Dual “Motion-Frozen Heart” Combining Respiration and Contraction Compensation in Clinical Myocardial Perfusion SPECT Imaging. J. Nucl. Cardiol. 2009;16;3:396-404. DOI: 10.1007/s12350-008-9034-0. 

32. Taillefer R., DePuey E.G., Udelson J.E., et al. Comparison between the End-Diastolic Images and the Summed Images of Gated 99mTc-Sestamibi SPECT Perfusion Study in Detection of Coronary Artery Disease in Women. J. Nucl. Cardiol. 1999;6;2:169-176. DOI: 10.1016/s1071-3581(99)90077-6. 

33. Bitarafan A., Rajabi H., Gruy B., et al. Respiratory Motion Detection and Correction in ECG-Gated SPECT: A New Approach. Korean J. Radiol. 2008;9;6:490-497. DOI: 10.3348/kjr.2008.9.6.490. 

34. Schäfers K.P., Stegger L. Combined Imaging of Molecular Function and Morphology with PET/CT and SPECT/CT: Image Fusion and Motion Correction. Basic Res. Cardiol. 2008;103;2:191-199. DOI: 10.1007/s00395-008-0717-0. 

35. Dawood M., Lang N., Jiang X., Schäfers K.P. Lung Motion Correction on Respiratory Gated 3-D PET/CT Images. IEEE Trans. Med. Imaging. 2006;25;4:476-485. DOI: 10.1109/TMI.2006.870892. 

36. Zhang D., Pretorius P.H., Ghaly M., et al. Evaluation of Different Respiratory Gating Schemes for Cardiac SPECT. J. Nucl. Cardiol. 2020;27;2:634-647. DOI: 10.1007/s12350-018-
1392-7. 

37. Zhang D., Sun J., Pretorius P.H., et al. Clinical Evaluation of three Respiratory Gating Schemes for Different Respiratory Patterns on Cardiac SPECT. Med. Phys. 2020;47;9:4223-4232. DOI: 10.1002/mp.14354. 

38. Kim B.H., Ishida Y., Tsuneoka Y., et al. Effects of Spontaneous Respiration on Right and Left Ventricular Function: Evaluation by Respiratory and ECG Gated Radionuclide Ventriculography. J. Nucl. Cardiol. 1987;28;2:173-177. 

39. Cho K., Kumiata S., Okada S., Kumazaki T. Development of Respiratory Gated Myocardial SPECT System. J. Nucl. Cardiol. 1999;6;1;
Pt 1:20-28. DOI: 10.1016/s1071-3581(99)90061-2. 

40. Tada, Hosono M., Fujioka T., et al. Monitoring of Respiratory Movement of the Diaphragm for Gated Radiotherapy. Radiat. Med. 2005;23;1:10-13. 

41. Kovalski G., Israel O., Keidar Z., et al. Correction of Heart Motion Due to Respiration in Clinical Myocardial Perfusion SPECT Scans Using Respiratory Gating. J. Nucl. Cardiol. 2007;48;4:630-636.
DOI: 10.2967/jnumed.106.037390. 

42. Chan C., Harris M., Le M., et al. End-Expiration Respiratory Gating for a High-Resolution Stationary Cardiac SPECT System. Phys. Med. Biol. 2014;59;20:6267-6287. DOI: 10.1088/0031-9155/59/20/6267. 

43. Lange P.S., Avramovic N., Frommeyer G., et al. Routine 18F-FDG PET/CT Does not Detect Inflammation in the Left Atrium in Patients with Atrial Fibrillation. Int. J. Cardiovasc Imaging. 2017;33;8:1271-1276. DOI: 10.1007/s10554-017-1094-2. 

44. Kiuchi K., Fukuzawa K., Mori S., et al. Feasibility of Imaging Inflammation in the Left Atrium Post AF Ablation Using PET Technology. JACC Clin. Electrophysiol. 2017;3;12:1466-1467. DOI: 10.1016/j.jacep.2017.02.004. 

45. Watanabe E., Miyagawa M., Uetani T., et al. Positron Emission Tomography/Computed Tomography Detection of Increased 18F-Fluorodeoxyglucose Uptake in the Cardiac Atria of Patients with Atrial Fibrillation. Int. J. Cardiol. 2019;283:171-177. DOI: 10.1016/j.ijcard.2018.10.106. 

46. Harrison S.D., Harrison M.A., Duvall W.L. Stress Myocardial Perfusion Imaging in the Emergency Department-New Techniques for Speed and Diagnostic Accuracy. Curr. Cardiol. Rep. 2012;8;2:116-1 22.
DOI: 10.2174/157340312801784916.

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 30.11.2021. Accepted for publication: 30.03.2022.