Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3

P.D. Remizov

Novel Immuno-PET Medical Radionuclides

M.V. Lomonosov Moscow State University, Moscow, Russia

Contact person: P.D. Remizov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

CONTENTS

Introduction

Modern imaging targets and vectors

Immuno-PET

Radionuclides for immuno-PET

Immuno-PET with 89Zr

Production of positron-emitting nuclides for immuno-PET

Conclusion

Keywords: positron emission tomography, medical radionuclides, 124I, 89Zr, immuno-PET, monoclonal antibodies

For citation: Remizov PD. Novel Immuno-PET Medical Radionuclides. Medical Radiology and Radiation Safety. 2022;67(3):67–74.
(In Russian). DOI:10.33266/1024-6177-2022-67-3-67-74

References

1. Cherry S., Jones T., Karp J., Qi J., Moses W., Badawi R. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care. Journal of Nuclear Medicine. 2017;59;1:3-12. doi:10.2967/jnumed.116.184028

2. Delbeke D., Segall G. Status of and Trends in Nuclear Medicine in the United States. Journal of Nuclear Medicine. 2011;52;Suppl.2:24S-28S. doi:10.2967/jnumed.110.085688. 

3. Human Health Campus – Database & Statistics. Humanhealth.iaea.org. https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINEMaps.html. Published 2021. Accessed July 13, 2021.

4. Lee S., Burvenich I., Scott A. Novel Target Selection for Nuclear Medicine Studies. Semin Nucl. Med. 2019;49;5:357-368. doi:10.1053/j.semnuclmed.2019.06.004.

5. Lee S., Xie J., Chen X. Peptides and Peptide Hormones for Molecular Imaging and Disease Diagnosis. Chem Rev. 2010;110;5:3087-3111. doi:10.1021/cr900361p.

6. Van Dongen G., Visser G., Lub‐de Hooge M., de Vries E., Perk L. Immuno‐PET: A Navigator in Monoclonal Antibody Development and Applications. Oncologist. 2007;12;12:1379-1389. doi:10.1634/theoncologist.12-12-1379.

7. Köhler G., Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature. 1975;256;5517:495-497. doi:10.1038/256495a0.

8. Teillaud J. Engineering of Monoclonal Antibodies and Antibody-Based Fusion Proteins: Successes and Challenges. Expert Opin. Biol. Ther. 2005;5;sup1:S15-S27. doi:10.1517/14712598.5.1.s15.

9. Reddy S., Robinson M. ImmunoPET in Cancer Models. Semin. Nucl. Med. 2010;40;3:182–189. doi:10.1053/j.semnuclmed.2009.12.004.

10. Adams G., Schier R., McCall A., Simmons H., Horak E., Alpaugh R., et al. High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules. Cancer Res. 2001;61;12:4750-4755.

11. Adams G., Tai M., McCartney J., Marks J., Stafford W., Houstonet L., et al. Avidity-Mediated Enhancement of in Vivo Tumor Targeting by Single-Chain Fv Dimers. Clin. Cancer Res. 2006;12;5:1599–1605. DOI: 10.1158/1078-0432.CCR-05-2217.

12. Williams L., Wu A., Yazaki P., Raubitschek A., Shively J., Wong J. Numerical Selection of Optimal Tumor Imaging Agents with Application to Engineered Antibodies. Cancer Biother Radiopharm. 2001;16;1:25–35. doi: 10.1089/108497801750095989.

13. McKnight B., Viola-Villegas N. 89Zr-ImmunoPET Companion Diagnostics and Their Impact in Clinical Drug Development. Journal of Labelled Compounds and Radiopharmaceuticals. 2018;61;9:727-738. doi:10.1002/jlcr.3605.

14. Chernyaev A., Borshchegovskaya P., Nikolaeva A., Varzar’ S., Samosadnyi V., Krusanov G. Radiation Technology in Medicine: Part 2. Using Isotopes in Nuclear Medicine. Moscow University Physics Bulletin. 2016;71;4:339-348. doi:10.3103/s0027134916040044.

15. Kraeber-Bodéré F., Rousseau C., Bodet-Milin C., Mathieu C., Guérard F., Frampas E., et al. Tumor Immunotargeting Using Innovative Radionuclides. Int. J. Mol. Sci. 2015;16;2:3932-3954. doi:10.3390/ijms16023932.

16. Boswell C., Brechbiel M.. Development of Radioimmunotherapeutic and Diagnostic Antibodies: an Inside-Out View. Nucl. Med. Biol. 2007;34;7:757-778. doi:10.1016/j.nucmedbio.2007.04.001.

17. Altai M., Membreno R., Cook B., Tolmachev V., Zeglis B.M. Pretargeted Imaging and Therapy. J. Nucl. Med. 2017;58;10:1553-1559. doi:10.2967/jnumed.117.189944.

18. Stéen E.J.L., Edem P.E., Nørregaard K., Jørgensen J., Shalgunov V., Kjaer A., et al. Pretargeting in Nuclear Imaging and Radionuclide Therapy: Improving Efficacy of Theranostics and Nanomedicines. Biomaterials. 2018;179:209-245. doi:10.1016/j.biomaterials.2018.06.021.

19. Wu A.M., Yazaki P.J., Tsai Sw., Nguyen K., Anderson A., McCarthy D., et al. High-Resolution MicroPET Imaging of Carcinoembryonic Antigen-Positive Xenografts by Using a Copper-64-Labeled Engineered Antibody Fragment. Proc. Natl. Acad. Sci USA. 2000;97;15:8495-8500. doi:10.1073/pnas.150228297.

20. Nayak T., Brechbiel M. 86Y Based PET Radiopharmaceuticals: Radiochemistry and Biological Applications. Med. Chem. 2011;7;5:380-388. doi:10.2174/157340611796799249.

21. Vandenberghe S. Three-Dimensional Positron Emission Tomography Imaging with 124I and 86Y. Nucl. Med. Commun. 2006;27;3:237-245. doi:10.1097/01.mnm.0000199476.46525.2c.

22. Pentlow K. Quantitative Imaging of Yttrium-86 with PET The Occurrence and Correction of Anomalous Apparent Activity in High Density Regions. Clinical Positron Imaging. 2000;3;3:85-90. doi:10.1016/s1095-0397(00)00046-7.

23. Fraker P., Speck J.Jr. Protein and Cell Membrane Iodinations with a Sparingly Soluble Chloroamide, 1,3,4,6-Tetrachloro-3a,6a-Diphrenylglycoluril. Biochem Biophys Res. Commun. 1978;80;4:849-857. doi:10.1016/0006-291x(78)91322-0.

24. Cyclotron Produced Radionuclides: Emerging Positron Emitters For Medical Applications: 64Cu And 124I. Radioisotopes and Radiopharmaceuticals Reports No. 1. Vienna, International Atomic Energy Agency, 2016.

25. Abou D., Ku T., Smith-Jones P. In Vivo Biodistribution and Accumulation of 89Zr in Mice. Nucl. Med. Biol. 2011;38;5:675-681. doi:10.1016/j.nucmedbio.2010.12.011.

26. Heskamp S., Raavé R., Boerman O., Rijpkema M., Goncalves V., Denat F. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry. Bioconjug Chem. 2017;28;9:2211-2223. doi:10.1021/acs.bioconjchem.7b00325.

27. Chomet M., van Dongen GAMS, Vugts D.J. State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET. Bioconjug Chem. 2021;32;7:1315-1330. doi:10.1021/acs.bioconjchem.1c00136.

28. Cascini G., Niccoli Asabella A., Notaristefano A., Restuccia A., Ferrari C., Rubini D., et al. 124 Iodine: a Longer-Life Positron Emitter Isotope-New Opportunities in Molecular Imaging. Biomed Res. Int. 2014;2014:672094. doi:10.1155/2014/672094.

29. Bensch F., Brouwers A., Lub-de Hooge M., de Jong J., van der Vegt B., Sleijfer S., et al. 89Zr-Trastuzumab PET Supports Clinical Decision Making in Breast Cancer Patients, when HER2 Status Cannot be Determined by Standard Work Up. Eur. J. Nucl. Med. Mol. Imaging. 2018;45;13:2300-2306. doi:10.1007/s00259-018-4099-8.

30. Dehdashti F., Wu N., Bose R., Naughton M., Ma C., Marquez-Nostra B., et al. Evaluation of [89Zr]trastuzumab-PET/CT in Differentiating HER2-Positive from HER2-Negative Breast Cancer. Breast Cancer Res. Treat. 2018;169;3:523-530. doi:10.1007/s10549-018-4696-z.

31. Dijkers E., Kosterink J., Rademaker A., Perk L., van Dongen G., Bart J., de Jong J., et al. Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging. J. Nucl. Med. 2009;50;6:974-981. doi:10.2967/jnumed.108.060392.

32. Gaykema S., Brouwers A., Lub-de Hooge M., Pleijhuis R., Timmer-Bosscha H., Pot L., et al. 89Zr-Bevacizumab PET Imaging in Primary Breast Cancer. J. Nucl. Med. 2013;54;7:1014-1018. doi:10.2967/jnumed.112.117218.

33. Ulaner G., Lyashchenko S., Riedl C., Ruan S., Zanzonico P., Lake D., et al. First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using 89Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer. J. Nucl. Med. 2018;59;6:900-906. doi:10.2967/jnumed.117.202010.

34. O’Donoghue J., Lewis J., Pandit-Taskar N., Fleming S., Schöder H., Larson S., et al. Pharmacokinetics, Biodistribution, and Radiation Dosimetry for 89Zr-Trastuzumab in Patients with Esophagogastric Cancer. J, Nucl, Med. 2018;59;1:161-166. doi:10.2967/jnumed.117.194555.

35. Pandit-Taskar N., O’Donoghue J., Beylergil V., Lyashchenko S., Ruan S., Solomonet S., et al. ⁸⁹Zr-huJ591 Immuno-PET Imaging in Patients with Advanced Metastatic Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging. 2014;41;11:2093-2105. doi:10.1007/s00259-014-2830-7.

36. McCarthy W., Shefer R., Klinkowstein R., Bass L., Margeneau W., Cutler C., et al. Efficient Production of High Specific Activity 64Cu Using a Biomedical Cyclotron. Nucl. Med. Biol. 1997;24;1:35-43. doi:10.1016/s0969-8051(96)00157-6.

37. Retracted: The Copper Radioisotopes: A Systematic Review with Special Interest to 64Cu [retraction of: Biomed Res Int. 2014;2014:786463]. BioMed Res. Int. 2018;2018:3860745. doi:10.1155/2018/3860745.

38. Ikotun O., Lapi S. The Rise of Metal Radionuclides in Medical Imaging: Copper-64, Zirconium-89 and Yttrium-86. Future Med Chem. 2011;3;5:599-621. doi:10.4155/fmc.11.14.

39. Alves F., Alves V., Do Carmo S., Neves A., Silva M., Abrunhosa A. Production of Copper-64 and Gallium-68 with a Medical Cyclotron Using Liquid Targets. Mod. Phys. Lett A. 2017;32;17:1740013. doi:10.1142/s0217732317400132.

40. Rajec P., Csiba V., Leporis M., Štefečka M., Pataky E., Reich M., et al. Preparation and Characterization of Nickel Targets for Cyclotron Production of 64Cu. J. Radioanal Nucl. Chem. 2010;286;3:665-670. doi:10.1007/s10967-010-0736-9.

41. Reischl G., Rösch F., Machulla H. Electrochemical Separation and Purification of Yttrium-86. Radiochimica Acta. 2002;90;4:225-228. doi:10.1524/ract.2002.90.4_2002.225.

42. Yoo J., Tang L., Perkins T., Rowland D., Laforest R., Lewis J., et al. Preparation of High Specific Activity 86Y Using A Small Biomedical Cyclotron. Nucl. Med. Biol. 2005;32;8:891-897. doi:10.1016/j.nucmedbio.2005.06.007.

43. Avila-Rodriguez M., Nye J., Nickles R. Production and Separation of Non-Carrier-Added 86Y from Enriched 86Sr Targets. Appl. Radiat. Isot. 2008;66;1:9-13. doi:10.1016/j.apradiso.2007.07.027.

44. Koehler L., Gagnon K., McQuarrie S., Wuest F. Iodine-124: a Promising Positron Emitter for Organic PET Chemistry. Molecules. 2010;15;4:2686-2718. doi:10.3390/molecules15042686.

45. Synowiecki M., Perk L., Nijsen J. Production of Novel Diagnostic Radionuclides in Small Medical Cyclotrons. EJNMMI Radiopharm Chem. 2018;3;1:3. doi:10.1186/s41181-018-0038-z.

46. Wang F., Liu T., Li L., Guo X., Duan D., Liu Z., et al. Production, Quality Control of Next-Generation PET Radioisotope Iodine-124 and Its Thyroid Imaging. J. Radioanal Nucl. Chem. 2018;318;3:1999-2006. doi:10.1007/s10967-018-6277-3.

47. Soppera N., Dupont E., Flemming M. JANIS Book of Deuteron Induced Cross Sections: Comparison of Evaluated and Experimental Data from ENDF/B-VIII.0, TENDL-2019 and EXFOR. 2020.

48. Dabkowski A., Paisey S., Talboys M., Marshall C. Optimization of Cyclotron Production for Radiometal of Zirconium 89. Acta. Physica Polonica A. 2015;127;5:1479-1482. doi:10.12693/aphyspola.127.1479.

49. Verel I., Visser G., Boellaard R., Stigter-van W., Snow G., van Dongen G. 89Zr Immuno-PET: Comprehensive Procedures for the Production of 89Zr-Labeled Monoclonal Antibodies. J. Nucl. Med. 2003;44;8:1271-1281.

50. Siikanen J., Tran T., Olsson T., Strand S., Sandell A. A Solid Target System with Remote Handling of Irradiated Targets for PET Cyclotrons. Appl. Radiat. Isot. 2014;94:294-301. doi:10.1016/j.apradiso.2014.09.001.

51. Ellison P., Valdovinos H., Graves S., Barnhart T., Nickles R. Spot-Welding Solid Targets for High Current Cyclotron Irradiation. Appl. Radiat. Isot. 2016;118:350-353. doi:10.1016/j.apradiso.2016.10.010.

52. Pandey M., Bansal A., Engelbrecht H., Byrne J., Packard A., DeGrado T. Improved Production and Processing of 89Zr Using a Solution Target. Nucl. Med. Biol. 2016;43;1:97-100. doi:10.1016/j.nucmedbio.2015.09.007.

53. DeGrado T., Pandey M., Byrne J. Solution Target for Cyclotron Production of Radiometals. Google Patents. 2017.

54. Oehlke E., Hoehr C., Hou X., Hanemaayer V., Zeisler S., Adam M., et al. Production of Y-86 and Other Radiometals for Research Purposes Using a Solution Target System. Nucl. Med. Biol. 2015;42;11:842-849. doi:10.1016/j.nucmedbio.2015.06.005.

55. Zheltonozhsky V., Zheltonozhskaya M., Savrasov A., Belyshev S., Chernyaev A., Yatsenko V. Studying the Activation of 177Lu in (γ, рxn) Reactions. Bulletin of the Russian Academy of Sciences: Physics. 2020;84:923-928. doi:10.3103/s1062873820080328.

56. Hovhannisyan G., Bakhshiyan T., Dallakyan R. Photonuclear Production of the Medical Isotope 67Cu. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2021;498:48-51. doi:10.1016/j.nimb.2021.04.016.

57. Belousov A.I., Zheltonozhskaya M.V., Lykova Ye.N., Rem-
izov P.D., CHernyayev A.P., Yatsenko V.N. Research of 131Cs Radionuclide Production for Brachytherapy with Photonuclear Method. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2019;64;
1:53-57. doi:10.12737/article_5c55fb4d218e20.76419134.
(In Russ.). [Белоусов А.И., Желтоножская М.В., Лыкова Е.Н., Ремизов П.Д., Черняев А.П., Яценко В.Н. Исследование возможности получения радионуклида 131Cs для брахитерапии фотоядерным способом // Медицинская радиология и радиационная безопасность. 2019. Т.64, № 1. С. 53-57].

58. Loveless C., Radford L., Ferran S., Queern S., Shepherd M., Lapi S. Photonuclear Production, Chemistry, and in Vitro Evaluation of the Theranostic Radionuclide 47Sc. EJNMMI Res. 2019;9;42. doi:10.1186/s13550-019-0515-8.

59. Chernyaev A., Kolyvanova M., Borshchegovskaya P. Radiation Technology in Medicine: Part 1. Medical Accelerators. Moscow University Physics Bulletin. 2015;70;6:457-465. doi:10.3103/s0027134915060090.

60. Zheltonozhskaya M., Zheltonozhsky V., Lykova E., Chernyaev A., Iatsenko V. Production of Zirconium-89 by Photonuclear Reactions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2020;470:38-41. doi:10.1016/j.nimb.2020.03.002.

 PDF (RUS) Full-text article (in Russian)  

Conflict of interest. The authors declare no conflict of interest.

Financing. The reported study was funded by RFBR, project number 20-315-90124. This research has been supported by the Moscow State University Interdisciplinary Scientific and Educational School “Photonic and Quantum technologies. Digital medicine”.

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.