Medical Radiology and Radiation Safety. 2022. Vol. 67. № 3

V.A. Klimanov1,2, M.A. Kolyvanova2, A.N. Moiseev3

Spatial Distributions of the Dose Created Phantom Pencil Beam of Mono-Energy
and Bremsstrahlung Photons in a Water with Energies from 0.25 to 20 MeV

1A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2National Research Nuclear University MEPhI, Moscow, Russia

3 LLC “Medskan”

Contact person: Vladimir Aleksandrovich Klimanov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

ABSTRACT

Purpose: Critical analysis of existing and obtaining more accurate data on the spatial dose distributions created in the water phantom by pencil beams (PB) of monoenergetic and bremsstrahlung photons with energies from 0.25 to 20.0 MeV, and approximation of these distributions for the purpose of calculating doses in radiation therapy. 

Material and Methods: Using the Monte Carlo method, the EGSnrc program and the MATLAB mathematical package, these distributions were calculated for monoenergetic photons in the energy range from 0.25 to 19.75 MeV in increments of 0.5 MeV, for bremsstrahlung photons with a maximum energy of 4.0, 6.0, 10.0, 15.0, 18.0 MeV and for the gamma-radiation spectrum of the therapeutic apparatus ROCUS. The calculation results are converted into the so-called dose kernel of photon pencil beam. The obtained dose kernel values are compared with previously published data and the observed discrepancies are discussed. Depths in water were studied from 1.0 to 40 cm in increments of 0,5 cm and along the radius from 0.02 to 46.0 cm with an uneven grid. For bremsstrahlung and photons with the spectrum of the Rocus apparatus, the possibility of approximating dose kernel values using approximation formulas convenient for calculating doses in radiation therapy has been investigated.

Results: On the basis of the results obtained, a new version of the library of dose kernels of a pencil photon beam for water was created, which differs from previous versions by the use for calculating a better description and modeling of the physical processes of the interaction of photons and charged particles with matter, more adequate data on the interaction cross sections and significantly lower values of statistical uncertainties of the results. For bremsstrahlung and photons with the spectrum of the Rocus apparatus, a mathematical model of dose kernels of a pencil beam is proposed, which includes decomposition of the dose kernels into components of the primary and scattered doses, approximation formulas and empirical coefficients convenient for integration. The values of empirical coefficients are determined by fitting to the results of the calculation of dose kernels using a combination of the random search method and the nonlinear regression method. 

Conclusion: The results obtained in this work will improve the algorithms and increase the accuracy of dose calculation when planning remote therapy with photon beams.

Keywords: photons, pencil beam, dose kernel, bremsstrahlung, radiation therapy, mathematical model, approximation formulas

For citation: Klimanov VA, Kolyvanova MA, Moiseev AN. Spatial Distributions of the Dose Created Phantom Pencil Beam of Mono-Energy and Bremsstrahlung Photons in a Water with Energies from 0,25 to 20 MeV. Medical Radiology and Radiation Safety. 2022;67(3):83–88. (In Russian). DOI:10.33266/1024-6177-2022-67-3-83-88

References

1. Handbook of radiotherapy physics. Theory and practice/ Edited by Mayles F.,A.Nahum, J. Rosenwald // Taylor &Franis Group. 2007.

2. Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous medium // Med. Phys. 1989. V. 16. № 3. P. 577–591.

3. Ahnesjo A., Saxner M., Trepp A. A pencil beam model for photon dose calculation // Med. Phys. 1992, V. 19. №2. P.263–273.

4. Nizin P.S. Phenomenological dose model for therapeutic photon beams: basic concepts and definitions // Med. Phys. 1999. V. 26. № 9. P. 1893–1900.

5. Ostapiac O.Z., Zhu Y., Van Duk J. Refinements of finite-size pencil beam model for three-dimensional photon dose calculation // Med. Phys. 1997. V. 24. № 5. P. 743 -750.

6. Ulmer W., Pyyry J.,  Kaissl W. A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations // Phys. Med. Biol. 2005. V. 50. № 4. P. 1767–1790.

7. Tillikainen L., Helminen H., Torsti T. et al. A 3D pencil beam based superposition algorithm for photon dose calculation in heterogeneous media // Phys. Med. Biol. 2008. V. 53. № 10. P. 3821–3839.

8. Varian medical systems. Eclipse algorithms reference guide // P/N B 502612R01A.  August 2009.

9. Khazaee V.M., Kanmali A., Geramifar P. Calculation of tissue dose point kernel using GATE Monte Carlo simulation toolkit to compare with water dose point kernel // Med. Phys. 2015. V. 42, № 9. P. 3367.

10. Huang J., Childress N., Kry S. Calculation of high resolution and material specific photon energy deposition kernels // Med. Phys. 2013.
V. 41, № 2. P. 271.

11. Egashira Y., Nishina T., Hotla K. et al. Application of pencil-beam redefinition algorithm in heterogeneous media for proton beam therapy// Phys. Med. Biol. 2013. V. 58. № 5. P.1169.

12. Azcona J.D., Barbes B., Wang L. Experimental pencil beam kernels deriviation for 3D dose calculatin in flattening filter free modulation fields// Phys. Med. Biol. 2016. V. 61. №1. P. 50.

13. Donskoy E.N., Klimanov V.A., Smirnov V.V. et al. Dose energy distributions of differential and integral thin rays of photons in water for planning purposes in radiation therapy// Medical Physics. Technique, Biology, Clinic (Russia), 1997.   No. 4. P. 38–42.

14. Klimanov V.A., Kozlov E.B., Troshin V.S. et al. Library of Integral Dose Kernels for Calculation of Dose Distributions in Radiotherapy// Medical Radiology and Radiation Safety (Russia), 2000. V. 45. № 5.
P. 55 –61.

15. Klimanov V.A. Radiobiological and dosimetry planning of radiotherapy and radionuclide therapy. Part 1. M.: ed. MEPhI. 2011

16. Donskoy E.N. The method and program of ELISA for the Monte-Carlo method of solving problems of joint transfer of gamma radiation, electrons and positrons// Problems of Atomic Science and Technology. Series: Mathematical Modeling of Processes. Issue 1, 1993. P. 3–6.

17. Klimanov V.A., Donskoy E.N., Smirnov V.V., Troshin V.S. Database of energy deposition kernels for radiation therapy purposes// In: Proceedings “Nuclear data for science and technology. Part 2”, Trieste, 1997.
P. 1704–1706.

18. Storm E., Israel H. Photon Cross Sections from 1 KeV to 100 MeV for ElementsZ=l to Z=l00// Atomic Data and Nuclear Data Tables 7, 1970. P. 565. 

19. Akkerman A.F. Simulation of the trajectories of charged particles in a substance // M: Energoatomizdat. 1991.

20. Smirnov V.V. Modeling the process of electron transfer in tasks// Radiation Physics: Study Guide. M.: MEPhI, 2008

21. Nelson W.R., Hyrayama H., Roger D.W.O. The EGS4 code system / SLAC.  Report Slac -265.

22. Bielajew A.F. et al. History, overview and recent improvements of EGS4//National research council of Canada Report PIRS-0436. 1994.

23. Kawrakow I. et al. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport// NRCC Report PIRS-701. 2013.

24. Salvat, F., Fernandez-Varea  J. M. Overview of physical interaction models for photon and electron transport used in Monte Carlo codes // Metrologia. 2009.  V. 46. S112–S138.

25. Rogers DWO, Kawrakow I, Seuntjens JP et al. National Research Council of Canada Report No. PIRS-702 (rev C) NRC Usercodes for EGSnrc (Ottawa: NRCC). 2011.

26. Sawkey D., O’Shea T., Faddegon B.A. Experimental verification of clinically Monte Carlo X-ray simulation // Med. Phys. 2010. V. 37.
№ 9. P. 3272.

27. Ali E.S.M., McEwen M.R., Roger D.W.O. Detailed high-accuracy megavoltage transmission measurements: A sensitive experimental benchmark of EGSnrc // Med. Phys. 2012.  V. 39. № 10. P. 3300-3010.

28. Song T., Zhou L.,Jiang S. Monte Carlo Simulation of a 6MV Varian Truebeam Without Flattening Filter Linac // Med. Phys. 2012. V.39.
№ 11.  P. 3819.

29. Maigne L., Perrot Y., Sсhaart D.R. et al. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV // Phys. Med. Biol. 2011. V. 56. № 3. P. 811–827.

30. Klimanov V.A., Moiseev A.N., Mogilenets N.N. Analytical approximation of the dose kernels of a thin photon beam with the spectrum of the therapeutic device ROKUS // Medical Physics (Russia), 2015. V. 2
№ 66, P. 7–15.

31. Moiseev A.N., Klimanov V.A. Dose distributions of a thin ray of neutrons in water// Almanac of Clinical Medicine, V. XVII, Part 1, 2008.
P. 350–354.

32. Klimanov V.A., Moiseev A.N., Kolyvanova M.A. et al. Dose kernel of thin and differential thin rays of photons with the spectrum of the Raucus therapeutic apparatus with a Co-60 source and their analytical approximation// Vestnik MGU. Physics and astronomy, 2016. V. 71.
№ 4, P. 432– 40.

33. Klimanov V.A., Moiseev A.N., Kolyvanova M.A., Galyautdinova Zh.Zh. Analytical model of the dose kernels of a thin photon beam for dosimetry of non-standard photon beams with a small circular cross-section// Medical equipment, 2018. V. 52 № 2, P. 27–30.

34. Sheikh-Bagheria D., Rogers D.W.O. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code.  Med. Physics, 2002. V. 29.  № 3, P. 391–402.

 PDF (RUS) Full-text article (in Russian)  

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 17.01.2022. Accepted for publication: 15.03.2022.