Medical Radiology and Radiation Safety. 2022. Vol. 67. № 6


N.V. Denisova

Computational Phantoms for Medical Radiology

S.A. Khristianovich Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

Contact person: N.V. Denisova, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.



This paper provides a brief overview of the computational anthropomorphic phantoms development for research in medical imaging, radiation dosimetry and radiotherapy planning. In medical radiology, clinical research methods are limited due to the radiation exposure of patients, volunteers and researchers, so great efforts are directed to the development of a mathematical modeling method. Computational phantoms are used in simulation as virtual patients. This new way of research in medicine opens up huge opportunities in the development of high technologies. Over the past decade, several leading groups have formed in the world that have licensed families of named anthropomorphic phantoms for radiation dosimetry and radiation therapy. The review considers the work of almost all major developers of computational phantoms in the world and in Russia. Particular attention is paid to the development of computational phantoms for research in the field of medical imaging (SPECT, PET).

Keywords: nuclear medicine, computational anthropomorphic phantoms, mathematical modeling

For citation: Denisova NV. Computational Phantoms for Medical Radiology. Medical Radiology and Radiation Safety. 2022;67(6):51–61. (In Russian). DOI:10.33266/1024-6177-2022-67-6-51-61



1. Rumyantsev P.O., Trukhin A.A., Sergunova K.A., Sirota Ya.I., Makarova N.M., Bubnov A.A., Semenov D.S., Akhmad Ye.S. Phantoms for Nuсlear Medicine. Meditsinskaya Radiologiya i Radiatsionnaya Bezopasnost = Medical Radiology and Radiation Safety. 2020;65;2:62–67 (In Russ.).

2. Haydel L. Moore 3d Prints First Full ‘Human’ For Radiation Therapy Research. Louisiana State University. 2018.

3. Xu X.G. An Exponential Growth of Computational Phantom Research in Radiation Protection, Imaging, and Radiotherapy: a Review of the Fifty-Year History. Phys. Med. Biol. 2014;59;18:R233-302. doi: 10.1088/0031-9155/59/18/R233.

4. Kainz W., Neufeld E., Bolch W.E., Graff C.G., Chan Hyeong Kim, Niels Kuster, Bryn Lloyd, Tina Morrison, Paul Segars, Yeon Soo Yeom, Maria Zankl, Xu X. George, Benjamin M.W. Tsui. Advances in Computational Human Phantoms and Their Applications in Biomedical Engineering—A Topical Review. IEEE Trans. Rad. Plasma Med. Sci. 2019;3;1:1-23. 

5. Handbook of Anatomical Models for Radiation Dosimetry (Series in Medical Physics and Biomedical Engineering). Ed. Xu X. George, Keith F. Eckerman. CRC Press, 2009. ISBN 9781420059793.

6. Fisher H.L.J., Snyder W.S. 1966 Variation of Dose Delivered by 137Cs as a Function of Body Size from Infancy to Adulthood. Health Physics Division Annual Progress Report for Period Ending July 31, 1966. Oak Ridge National Laboratory. 1966. 221–228.

7. Billings M.P., Yucker W.R. The Computerized Anatomical Man (CAM) model NASA CR-134043. Houston, TX, National Aeronautics and Space Administration, 1973.

8. Kramer R., Zankl M., Williams G., Drexler G. The male (ADAM) and Female (EVA) Adult Mathematical Phantoms GSF-Report S-885. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods. Part I. Neuherberg: Institut Fuer Strahlenschutz, GSF-Forschungszentrum Fuer Umwelt und Gesundheit, 1982. 

9. Tsui B.M., Terry J.A., Gullberg G.T. Evaluation of Cardiac Cone-Beam Single Photon Emission Computed Tomography Using Observer Performance Experiments and Receiver Operating Characteristic Analysis. Inv. Radiol. 1993;28:1101–1112.

10. Pretorius P.H., Xia W., King M.A., Tsui B.M., Pan T.S., Villegas B.J. Evaluation of Right and Left Ventricular Volume and Ejection Fraction Using A Mathematical Cardiac Torso Phantom. J. Nucl. Med. 1997;38:1528–1535.

11. Park S., Lee J.K., Lee C. Development of a Korean Adult Male Computational Phantom For Internal Dosimetry Calculation. Radiat. Prot. Dosim. 2006;121:257–264.

12. Hirata A., Ito N., Fujiwara O., Nagaoka T., Watanabe S. Conservative Estimation of Whole-Body-Averaged SARs in Infants with a Homogeneous and Simple-Shaped Phantom in the GHz Region. Phys. Med. Biol. 2008;53:7215–7223.

13. Qiu R., Li J., Zhang Z., Wu Z., Zeng Z., Fan J. Photon SAF Calculation Based on the Chinese Mathematical Phantom and Comparison with the ORNL Phantoms. Health. Phys. 2008;95:716–724.

14. Yevseyenko L.V., Kurakin A.A., Tultayev A.V., Chernyayev A.P. Matematicheskaya Model Fantoma Cheloveka v Radionuklidnoy Diagnostike i Terapii = Mathematical Model of a Human Phantom in Radionuclide Diagnostics and Therapy. Moscow Publ., 2002. P. 1–62 (In Russ.).

15. Denisova N.V., Kurbatov V.P., Terekhov I.N. Development of a mathematical phantom for modeling the procedure for examining patients using SPECT in cardiology. Meditsinskaya Fizika = Medical Physics. 2014;2:55-62 (In Russ.).

16. Denisova N., Ondar M., Hunor Kertesz, Thomas Beyer. Development of Anthropomorphic Mathematical Phantoms for Simulations of Clinical Cases in Diagnostic Nuclear Medicine. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2022.  DOI: 10.1080/21681163.2022.2074308.

17. Denisova N.V., Ansheles A.A. A Study of False Apical Defects in Myocardial Perfusion Imaging with SPECT/CT. Biomed. Phys. Eng. Express. 2018;4:065018.

18. Denisova N.V., Ansheles A.A., Sergienko V., Kertész H., Beyer T., Kolinko I. Artefacts Reduction in Cardiac SPECT Images by Using a Novel Reconstruction Algorithm Maximum a Posteriori with Local Regularization. EJNMMI. 2019.;46;Suppl 1:S62-S63.

19. Denisova N., Kertész H., Beyer T. Local Statistical Regularization Method for Solving Image Reconstruction Problems in Emission Tomography with Poisson Data. AIP Conference Proceedings. 2021;2351;1.

20. Williams G., Zankl M., Abmayr W., Veit R., Drexler G. The Calculation of Dose from External Photon Exposures Using Reference and Realistic Human Phantoms and Monte Carlo Methods. Phys. Med. Biol. 1986;31:449–452.

21. Petoussi-Henss N., Zankl M., Fill U., Regulla D. The GSF Family of Voxel Phantoms. Phys. Med. Biol. 2002;47:89–106.

22. Zankl M., Veit R., Williams G., et al. The Construction of Computer Tomographic Phantoms and Their Application in Radiology and Radiation Protection. Radiat. Environ. Biophys. 1988;27:153–164.

23. Zankl M., Wittmann A. The Adult Male Voxel Model ‘GOLEM’ Segmented from Whole-Body CT Patient Data. Radiat Environ Biophys. 2001;40:153-162. 

24. ICRP, 2009. Adult Reference Computational Phantoms. ICRP Publication 110. Ann. ICRP. 2009;39;2.

25. Zankl M., Eakins J., Goméz-Ros J.M., Huet C., Jansen J.T.M., Moraleda M., Reichelt U., Struelens L., Vrba T. EURADOS Intercomparison on the Usage of the ICRP/ICRU Adult Reference Computational Phantoms. Radiation Measurements. 2021;145;106596:1-5.

26. Zubal I.G., Harrell C.K., Smith E.O., Kattner Z., Gindi G., Hoffer P.B. Computerized Threedimensional Segmented Human Anatomy. Med. Phys. 1994;21:299-302. 

27. Zubal I.G., Harrell C.R., Smith E.O., Smith A.L. Two Dedicated Software, Voxel-Based, Anthropomorphic (Torso And Head) Phantoms. Voxel phantom development, 6 and 7 July 1995, Chilton, UK. 1995. P. 105-111.

28. Xu X.G., Chao T.C., Bozkurt A. VIP-Man: An Image-Based Whole-Body Adult Male Model Constructed from Color Photographs of the Visible Human Project for Multi-Particle Monte Carlo Calculations. Health Phys. 2000;78:476–486.

29. Wang B., Xu X.G., Kim C.H. A Monte Carlo CT Model of the Rando Phantom. Trans. Am. Nucl. Soc. 2004;90:473–474.

30. Nipper J.C., Williams J.L., Bolch W.E. Creation of Two Tomographic Voxel Models of Paediatric Patients in the First Year of Life. Phys. Med. Biol. 2002;47:3143–3164. 

31. Lee C., Lee J., Lee C. Korean Adult Male Voxel Model KORMAN Segmented from Magnetic Resonance Images. Med. Phys. 2004;31;5:1017–1022.

32. Saito K., Wittmann A., Koga S., Ida Y., Kamei T., Funabiki J., Zankl M. Construction of a Computed Tomographic Phantom for a Japanese Male Adult and Dose Calculation System. Radiat. Environ. Biophys. 2001;40:69–75.

33. Zhang B., Ma J., Liu L., Cheng J. CNMAN: A Chinese Adult Male Voxel Phantom Constructed from Color Photographs of a Visible Anatomical Data Set. Radiat. Prot. Dosimetry. 2007;124;2:130–136.

34. URL:

35. Shevchenko Yu.L., Karpov O.E., Bronov O.Yu. Pirogov sections as a forerunner of modern computed tomography. Vestnik Natsionalnogo Mediko-Khirurgicheskogo Tsentra im. N.I. Pirogova = Bulletin of Pirogov National Medical & Surgical Centre. 2020;15;3:11-15. (In Russ.).

36. Moiseyenko D.N., Kurachenko Yu.A. Voxel Phantoms in Problems of Medical Physics. Meditsinskaya Fizika = Medical Physics. 2012;3:27 (In Russ.).

37. Moiseyenko D.N. Dissertation abstract. 2013 (In Russ.).

38. Medzhadzh T., Ksenofontova A.I., Dalechina A.V. Creating a Voxel Phantom for Dosimetric Verification of Treatment Plans in the Gamma-Knife Perfexion Using the Monte Carlo Method. Vestnik Natsionalnogo Issledovatelskogo Yadernogo Universiteta “MIFI”. 2019;8;5:473-479. doi: 10.1134/S2304487X19050055 (In Russ.). 

39. Segars W.P. Development and Application of the New Dynamic NURBS-Based Cardiac-Torso (NCAT) Phantom. Chapel Hill, NC, University of North Carolina, 2001.

40. Segars W.P., Sturgeon G., Mendonca S., Grimes J., Tsui B.M.W. 4D XCAT Phantom for Multimodality Imaging Research. Med. Phys. 2010;37;9:4902-4915.

41. Segars W.P., Tsui B.M.W. MCAT to XCAT: the Evolution of 4D Computerized Phantoms for Imaging Research. Proc. IEEE Inst. Electr. Electron Eng. 2009;97;12:1954-1968.

42. Segars W.P., Tsui B.M.W., Jing Cai, Fang-Fang Yin, Fung GSK, Samei E. Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond. IEEE Trans. Med. Imaging. 2018;37;3:680-692. doi: 10.1109/TMI.2017.2738448. 

43. Abadi E., Segars W.P., Tsui B.M.W., Kinahan P.E., Bottenus N., Frangi A.F., Maidment A., Lo J., Samei E. Virtual Clinical Trials in Medical Imaging: a Review. J. Med. Imaging (Bellingham). 2020;7;4:042805. doi: 10.1117/1.JMI.7.4.042805. 

44. Xu X.G. Computational Phantoms for Radiation Dosimetry: A 40-Year History of Evolution. Handbook of Anatomical Models for Radiation Dosimetry. Ed. Xu X.G., Eckerman K.F. Boca Raton, FL, Taylor & Francis, 2009. P. 3–42.

45. Lee C., Lodwick D., Hasenauer D.,Williams J.L., Lee C., Bolch W.E. Hybrid Computational Phantoms of the Male and Female Newborn Patient: NURBS-Based Whole-Body Models. Phys. Med. Biol. 2007;52:3309–3333.

46. Kim C.H., Jeong J.H., Bolch W.E., Cho K.-W., Hwang S.B. A Polygon-Surface Reference Korean Male Phantom (PSRK-Man) and Its Direct Implementation in Geant4 Monte Carlo Simulation. Phys. Med. Biol. 2011;56:3137–3161.

47. Farah J., Broggio D., Franck D. Examples of Mesh and NURBS Modelling for in Vivo Lung Counting Studies. Radiat. Prot. Dosimetry. 2011;144:344–348. 

48. Christ A., et al. The Virtual Family—Development of Surface-Based Anatomical Models of Two Adults and Two Children for Dosimetric Simulations. Phys. Med. Biol. 2010;55:N23–N38.

49. ICRP. Adult Mesh-Type Reference Computational Phantoms. ICRP Publication 145. Ann. ICRP. 2020;49;3.


 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.07.2022. Accepted for publication: 25.09.2022.