Medical Radiology and Radiation Safety. 2022. Vol. 67. № 6

DOI:10.33266/1024-6177-2022-67-6-62-66

G.G. Shimchuk1, A.B. Bruskin2, Gr.G. Shimchuk1

Opportunities and Prospects for Russia to Create Pet Centers Based on Generator Radionuclides

1 National Research Center “Kurchatov Institute”, Moscow, Russia

2 A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

Contact person: G.G. Shimchuk, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

An assessment of the capabilities of generator radionuclides and a list of generator pairs of radionuclides whose daughter isotope has the potential to be used in medicine for PET research is given. A list of typical 68Ga-based PET radiopharmaceuticals for oncology studied in preclinical and clinical studies is provided. Data on the use of the 82Sr/82Rb generator in clinical diagnostics are presented. The assessment of the existing situation with PET centers in Russia is given. A strategy for the development of a network of clinical PET centers and an overview of the state of generator technologies in Russia are proposed.

This article concludes that the use of generators makes it possible to significantly expand the range of clinical institutions capable of providing PET diagnostics and conducting PET studies, having only 1 or several PET scanners in the clinic. It is concluded that due to a serious reduction in capital investments (by 1.5 times) and a noticeable reduction in the cost of operation (by 1.5‒2 times), the use of generator systems will significantly reduce the cost of many PET diagnostic procedures in oncology and cardiology, make this method more accessible to a wide range of the country’s population.

Keywords: PET center, radionuclide generator, generator technologies, generator radiopharmaceuticals for PET.

For citation: Shimchuk GG, Bruskin AB, Shimchuk GrG. Opportunities and Prospects for Russia to Create Pet Centers Based on Generator Radionuclides. Medical Radiology and Radiation Safety. 2022;67(6):62–66. (In Russian). DOI:10.33266/1024-6177-2022-67-6-62-66

 

References

1. Green M.W., Tucker W.D. An Improved Gallium-68 Cow. J. Appl. Radiat. Isotop. 1961;12:62–64.

2. Yano Y., Anger H.O. A Gallium-68 Positron Cow for Medical Use. J. Nucl. Med. 1964;5:484–487.

3. Rösch F. 68Ge/68Ga Generators: Past, Present and Future. Theranotics, Gallium-68, and Other Radionuclides. Springer, 2012. P. 3–16.

4. Maecke H.R., André J.P. 68Ga-PET Radiopharmacy: A Generator-Based Alternative to 18F-Radiopharmacy. Ernst. Schering Res. Found Workshop. 2007;62:215-242. doi: 10.1007/978-3-540-49527-7_8.  

5. Lau J., Rousseau E., Kwon D., Lin K.-S., Bénard F., Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers. 2020;12;5:1312.  

6. Rangger C., Haubner R. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals. 2020;13:22.

7. Weineisen M., Schottelius M., Simecek J. 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J. Nucl. Med. 2015;56;8:1169-1176. doi: 10.2967/jnumed.115.158550.

8. Wunderlich G., Schiller E., Bergmann R., Pietzsch H.J. Comparison of the Stability of Y-90-, Lu-177- and Ga-68- Labeled Human Serum Albumin Microspheres (DOTA-HSAM). Nucl. Med. Biol. 2010;37;8:861-867. doi: 10.1016/j.nucmedbio.2010.05.004.

9. Li L., Chen X., Yu J., Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front. Oncol. 2022;12:837952. doi: 10.3389/fonc.2022.837952.

10. Grönman M., Tarkia M., Kiviniemi T., et al. Imaging of αvβ3 Integrin Expression in Experimental Myocardial Ischemia with [68Ga]NODAGA-RGD Positron Emission Tomography. J. Transl. Med. 2017;15;1:144. doi: 10.1186/s12967-017-1245-1.

11. Gould K.L. Clinical Cardiac PET Using Generator-Produced Rb-82: a Review. Cardiovasc Intervent Radiol. 1989;12;5:245-251. doi: 10.1007/BF02575408. 

12. Saha G.B., MacIntyre W.J., Go R.T. Radiopharmaceuticals for Brain Imaging. Semin. Nucl. Med. 1994;24;4:324-349. doi: 10.1016/s0001-2998(05)80022-4.

13. Slosman D.O., Spiliopoulos A., Keller A., et al. Quantitative Metabolic PET Imaging of a Plasma Cell Granuloma. J. Thorac. Imaging. Spring. 1994;9;2:116-119. doi: 10.1097/00005382-199421000-00013.

14. Чудаков В.М., Жуйков Б.Л., Ермолаев С.В. и др. Исследование характеристик генератора 82Rb для позитронно-эмиссионной томографии // Радиохимия. 2014. Т.56, № 5. С. 445-461. [Chudakov V.M., Zhuykov B.L., Yermolayev S.V., et al. Characterization of a 82rb Generator for Positron Emission Tomography. Radiokhimiya = Radiochemistry. 2014;56;5: 445-461 (In Russ.)].

15. Шимчук Г.Г., Шимчук Гр.Г., Кутузов С.Г. и др. Автоматизированная генераторная система клинического применения для болюсных и продолжительных инъекций хлорида Rb-82 // Медицинская физика. 2013. № 2. С. 67-75. [Shimchuk G.G., Shimchuk Gr.G., Kutuzov S.G., et al. The Automated Generator System of Clinical Application for Bolus and Continual Infusion of Rb-82 Chloride. Meditsinskaya Fizika = Medical Physics. 2013;2:67-75 (In Russ.)].

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The work was carried out with the support of the SIC «Kurchatov Institute» (Order No. 2751 dated 28.10.2021).

Contribution. Article was prepared with equal participation of the authors.

 

Article received: 20.07.2022. Accepted for publication: 25.09.2022.