Medical Radiology and Radiation Safety. 2022. Vol. 67. № 6

DOI:10.33266/1024-6177-2022-67-6-67-73

I.D. Rozanov1, M.S. Bunak2, A.A. Glazkov2, E.A. Stepanova2, S.S. Lebedev1, A.S. Balkanov2

Postoperative Perfusion Magnetic Resonance Imaging as a Tool
for Predicting Survival in Glioblastoma of the Brain

1S.P. Botkin City Clinical Hospital, Outpatient Cancer Care Center, Moscow, Russia

2M.F. VladimirskyMoscow Regional Research Clinical Institute, Moscow, Russia

Contact person: Andrey Sergeevich Balkanov, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

ABSTRACT

Glioblastoma is the most frequently detected primary brain tumor (pGB), the prognosis of which significantly depends on the magnitude of residual GB (rGB), for which magnetic resonance imaging (MRI) is used in the postoperative period.

Purpose: To analyze the data of ASL perfusion MRI (ASL-pMRI) performed prior to adjuvant radiation therapy (aRT), 6 to 8 weeks after resection of pGB, in terms of their prognostic significance for survival in this group of patients.

Material and methods: The study included 54 patients (median age ‒ 58 years; gender: 29 men, 25 women). The Karnovsky index in
81.5 % of patients was ≥80 %. To visualize and calculate the dimensions of the rGB, ASL-pMRI was used according to the type of pseudo-continuous three-dimensional marking of arterial spins. The focus/foci of hyperperfusion (CBFmean > 64 ml/100g/min) in the area of the wall of the postoperative cyst were considered as rGB.

Results: Survival in the total group of 54 patients with pGB was 18 months (95 % CI:14.23) . The use of ASL-pMRI made it possible to visualize rGB in 37 (68.5 %) patients. The probability of visualization of rGB was significantly higher (p=0.02) in the case of temporal localization of the tumor. Age (HR:1.04; 95 % CI: 1.01‒1.07; p=0.007), the maximum diameter of the rGB (HR:1.04; 95 % CI: (1.01‒1.07); p=0.03) and localization of pGB in the temporal lobe (HR:2.00; 95 % CI: 1.05‒3.80; p=0.034) had a significant negative impact on survival. The use of the multifactorial Cox model showed that only the age ≥60 years (HR:2.78; 95 % CI:1.26‒6.15; p=0.012) and the maximum diameter of rGB ≥25 mm (HR:3.35; 95 % CI:1.36‒8.22; p=0.008) retained their significant negative impact on the survival of patients with pGB.

Conclusions: the use of ASL – pMRI 6 to 8 weeks after resection of pGB indicates that the results obtained can become an effective tool for predicting survival in this group of patients.

Keywords: brain glioblastoma, ASL perfusion magnetic resonance imaging, residual glioblastoma, hyperperfusion focus, survival, radiation therapy

For citation: Rozanov ID, Bunak MS, Glazkov AA, Stepanova EA, Lebedev SS, Balkanov AS. Postoperative Perfusion Magnetic Resonance Imaging as a Tool for Predicting Survival in Glioblastoma of the Brain. Medical Radiology and Radiation Safety. 2022;67(6):67–73. (In Russian). DOI:10.33266/1024-6177-2022-67-6-67-73

 

References

1. Ostrom Q.T., Cote D.J., Ascha M., Kruchko C., Barnholtz-Sloan J.S. Adult Glioma Incidence and Survival by Race or Ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018;4;9:1254-1262. doi: 10.1001/jamaoncol.2018.1789.

2. Amirian E.S., Armstrong G.N., Zhou R., Lau C.C., Claus E.B., Barnholtz-Sloan J.S., Il’yasova D., Schildkraut J., Ali-Osman F., Sadetzki S., Johansen C., Houlston R.S, Jenkins R.B., Lachance D.,. Olson S.H., Bernstein J.L., Merrell R.T., Wrensch M.R., Davis F.G., Lai R., Shete S., Amos C.I., Scheurer M.E., Alafuzoff K.I., Brännström T., Broholm H., Collins P., Giannini C., Rosenblum M., Tihan T., Melin B.S., Bondy M.L. The Glioma International Case-control Study: A Report From the Genetic Epidemiology of Glioma International Consortium. Am. J. Epidemiol. 2016;183;2:85-91.

3. Chaichana K.L., Jusue-Torres I., Navarro-Ramirez R., Raza S.M., Pascual-Gallego M., Ibrahim A., Hernandez-Hermann M., Gomez L., Ye X., Weingart J.D., Olivi A., Blakeley J., Gallia G.L., Lim M., Brem H., Quinones-Hinojosa A. Establishing Percent Resection and Residual Volume Thresholds Affecting Survival and Recurrence for Patients with Newly Diagnosed Intracranial Glioblastoma. Neuro Oncol. 2014;16;1:113-122. doi: 10.1093/neuonc/not137. 

4. Wen P.Y., Weller M., Lee E.Q., et al. Glioblastoma in Adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) Consensus Review on Current Management and Future Directions. Neuro Oncol. 2020;22;8:1073-1113. doi:10.1093/neuonc/noaa106.

5. Burth S., Kickingereder P., Eidel O., Tichy D., Bonekamp D., Weberling L., Wick A., Löw S., Hertenstein A., Nowosielski M., Schlemmer H.P., Wick W., Bendszus M., Radbruch A. Clinical Parameters Outweigh Diffusion- and Perfusion-Derived MRI Parameters in Predicting Survival in Newly Diagnosed Glioblastoma. Neuro Oncol. 2016;18;12:1673-1679. doi: 10.1093/neuonc/now122.

6. Molinaro A.M., Hervey-Jumper S., Morshed R.A., Young J., Han S.J., Chunduru P., Zhang Y., Phillips J.J., Shai A., Lafontaine M., Crane J., Chandra A., Flanigan P., Jahangiri A., Cioffi G., Ostrom Q., Anderson J.E., Badve C., Barnholtz-Sloan J., Sloan A.E., Erickson B.J., Decker P.A., Kosel M.L., LaChance D., Eckel-Passow J., Jenkins R., Villanueva-Meyer J., Rice T., Wrensch M., Wiencke J.K., Oberheim Bush N.A., Taylor J., Butowski N., Prados M., Clarke J., Chang S., Chang E., Aghi M., Theodosopoulos P., McDermott M., Berger M.S. Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor with Survival Within Molecular Subgroups of Patients with Newly Diagnosed Glioblastoma. JAMA Oncol. 2020;6;4:495-503. doi: 10.1001/jamaoncol.2019.6143. Erratum in: JAMA Oncol. 2020;6;3:444. 

7. Kasper J., Hilbert N., Wende T., Fehrenbach M.K., Wilhelmy F., Jähne K., Frydrychowicz C., Hamerla G., Meixensberger J., Arlt F. On the Prognosis of Multifocal Glioblastoma: An Evaluation Incorporating Volumetric MRI. Curr Oncol. 2021;28;2:1437-1446. doi: 10.3390/curroncol28020136. 

8. Ma R., Chari A., Brennan P.M., Alalade A., Anderson I., Solth A., Marcus H.J., Watts C., British Neurosurgical Trainee Research Collaborative. Residual Enhancing Disease after Surgery for Glioblastoma: Evaluation of Practice in the United Kingdom. Neurooncol Pract. 2018;5;2:74-81. doi: 10.1093/nop/npx023. 

9. Wang P., Li J., Diao Q., Lin Y., Zhang J., Li L., Yang G., Fang X., Li X., Chen Y., Zheng L., Lu G. Assessment of Glioma Response to Radiotherapy Using 3D Pulsed-Continuous Arterial Spin Labeling and 3D Segmented Volume. Eur. J. Radiol. 2016;85;11:1987-1992. doi: 10.1016/j.ejrad.2016.08.009.

10. Batalov A.I., Zakharova N.Ye., Pogosbekyan E.L., Fadeyeva L.M., Goryaynov S.A., Bayev A.A., Shults Ye.I., Chelushkin D.M., Potapov A.A., Pronin I.N. Non-Contrast ASL Perfusion in Preoperative Diagnosis of Supratentorial Gliomas. Zhurnal Voprosy Neyrokhirurgii Imeni N.N. Burdenko = Burdenko’s Journal of Neurosurgery. 2018;82;6:15‑22. DOI 10.17116/neiro20188206115.

11. Marl H., Ertekin E., Tunçyürek Ö., Özsunar Y. Effects of Susceptibility Artifacts on Perfusion MRI in Patients with Primary Brain Tumor: A Comparison of Arterial Spin-Labeling versus DSC. AJNR Am. J. Neuroradiol. 2020;41;2:255-261. doi: 10.3174/ajnr.A6384.

12. Soni N., Dhanota D.P.S., Kumar S., Jaiswal A.K., Srivastava A.K. Perfusion MR Imaging of Enhancing Brain Tumors: Comparison of Arterial Spin Labeling Technique with Dynamic Susceptibility Contrast Technique. Neurol. India. 2017;65;5:1046-1052. doi: 10.4103/neuroindia.

13. Jovanovic M., Radenkovic S., Stosic-Opincal T., Lavrnic S., Gavrilovic S., Lazovic-Popovic B., Soldatovic I., Maksimovic R. Differentiation between Progression and Pseudoprogresion by Arterial Spin Labeling MRI in Patients with Glioblastoma Multiforme. J. BUON. 2017;22;4:1061-1067. 

14. Xu Q., Liu Q., Ge H., Ge X., Wu J., Qu J., Xu K. Tumor Recurrence Versus Treatment Effects in Glioma: A Comparative Study of three Dimensional Pseudo-Continuous Arterial Spin Labeling and Dynamic Susceptibility Contrast Imaging. Medicine (Baltimore). 2017;96;50:e9332. doi: 10.1097/MD.0000000000009332.

15. Lindner T., Ahmeti H., Lübbing I., Helle M., Jansen O., Synowitz M., Ulmer S. Intraoperative Resection Control Using Arterial Spin Labeling - Proof of Concept, Reproducibility of Data and Initial Results. Neuroimage Clin. 2017;15:136-142. doi: 10.1016/j.nicl.2017.04.021. 

16. Rebrikova V.A., Sergeev N.I., Padalko B.V., Kotlyarov P.M., Solodkiy V.A. The Use of Mr Perfusion in Assessing the Efficacy of Treatment for Malignant Brain Tumors. Zhurnal Voprosy Neyrokhirurgii Imeni N.N. Burdenko = Burdenko’s Journal of Neurosurgery. 2019;83;4:113-120 (In Russ.).  

17. Kotlyarov P.M., Nudnov N.V., Vinikovetskaya A.V., Egorova E.V., Albitskiy I.A., Ovchinnikov V.I., Gombolevskiy V.A. Ct Perfusion in Diagnostic and Estimation Treatment Efficacy of Malignant Cranial Gliomas. Luchevaya Diagnostika i Terapiya = Diagnostic Radiology and Radiotherapy. 2015;2:63-69. (In Russ.).

18. Brown T.J., Brennan M.C., Li M., Church E.W., Brandmeir N.J., Rakszawski K.L., Patel A.S., Rizk E.B., Suki D., Sawaya R., Glantz M. Association of the Extent of Resection with Survival in Glioblastoma: A Systematic Review and Meta-Analysis. JAMA Oncol. 2016;2;11:1460-1469. doi: 10.1001/jamaoncol.2016.1373.

19. Garcia-Ruiz A., Naval-Baudin P., Ligero M., Pons-Escoda A., Bruna J., Plans G., Calvo N., Cos M., Majós C., Perez-Lopez R. Precise Enhancement Quantification in Post-Operative MRI as an Indicator of Residual Tumor Impact Is Associated with Survival in Patients with Glioblastoma. Sci Rep. 2021;11;1:695. doi: 10.1038/s41598-020-79829-3.

20. Laurent D., Freedman R., Cope L., Sacks P., Abbatematteo J., Kubilis P., Bova F., Rahman M. Impact of Extent of Resection on Incidence of Postoperative Complications in Patients with Glioblastoma. Neurosurgery. 2020;86;5:625-630. doi: 10.1093/neuros/nyz313. 

21. Khashbat D., Harada M., Abe T., Ganbold M., Iwamoto S., Uyama N., Irahara S., Otomi Y., Kageji T., Nagahiro S. Diagnostic Performance of Arterial Spin Labeling for Grading Nonenhancing Astrocytic Tumors. Magn. Reson. Med. Sci. 2018;17;4:277-282. doi: 10.2463/mrms.mp.2017-0065.

22. Zeng Q., Jiang B., Shi F., Ling C., Dong F., Zhang J. 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preoperative Evaluation of Gliomas. AJNR Am. J. Neuroradiol. 2017;38;10:1876-1883. doi: 10.3174/ajnr.A5299.

23. Falk Delgado A., De Luca F., van Westen D., Falk Delgado A. Arterial Spin Labeling MR Imaging for Differentiation between High- and Low-Grade Glioma-a Meta-Analysis. Neuro Oncol. 2018;20;11:1450-1461. doi:10.1093/neuonc/noy095.

24. Bag A.K., Cezayirli P.C., Davenport J.J., et al. Survival Analysis in Patients with Newly Diagnosed Primary Glioblastoma Multiforme Using Pre- and Post-Treatment Peritumoral Perfusion Imaging Parameters. J. Neurooncol. 2014;120;2:361‐370. doi:10.1007/s11060-014-1560-9.

25. Bunak M.S., Stepanova YE.A., Stashuk G.A. The Potentiality of Arterial Spins Labeling (ASL) Magnetic Resonance Perfusion Technique for the Diagnosis of Glioblastoma Residual Tissue. Almanakh Klinicheskoy Meditsiny = Almanac of Clinical Medicine. 2021;49;1:41–48. doi: 10.18786/2072-0505-2021-49-012 (In Russ.).

26. Kumar N., Kumar R., Sharma S.C., Mukherjee A., Khandelwal N., Tripathi M., Miriyala R., Oinam A.S., Madan R., Yadav B.S., Khosla D., Kapoor R. Impact of Volume of Irradiation on Survival and Quality of Life in Glioblastoma: a Prospective, Phase 2, Randomized Comparison of RTOG and MDACC Protocols. Neurooncol Pract. 2020;7;1:86-93. doi: 10.1093/nop/npz024. 

27. Ali M.Y., Oliva C.R., Noman A.S.M., Allen B.G., Goswami P.C., Zakharia Y., Monga V., Spitz D.R., Buatti J.M., Griguer C.E. Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers (Basel). 2020;12;9:2511. doi: 10.3390/cancers12092511. 

28. Simpson J.R., Horton J., Scott C., Curran W.J., Rubin P., Fischbach J., Isaacson S., Rotman M., Asbell S.O., Nelson J.S., et al. Influence of Location and Extent of Surgical Resection on Survival of Patients with Glioblastoma Multiforme: Results of Three Consecutive Radiation Therapy Oncology Group (RTOG) Clinical Trials. Int. J. Radiat. Oncol. Biol. Phys. 1993;26;2:239-44. doi: 10.1016/0360-3016(93)90203-8. 

29. Al-Holou W.N., Hodges T.R., Everson R.G., Freeman J., Zhou S., Suki D., Rao G., Ferguson S.D., Heimberger A.B., McCutcheon I.E., Prabhu S.S., Lang F.F., Weinberg J.S., Wildrick D.M., Sawaya R. Perilesional Resection of Glioblastoma Is Independently Associated With Improved Outcomes. Neurosurgery. 2020;86;1:112-121. doi: 10.1093/neuros/nyz008. 

 

 PDF (RUS) Full-text article (in Russian)

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.07.2022. Accepted for publication: 25.09.2022.