Medical Radiology and Radiation Safety. 2023. Vol. 68. № 1

DOI: 10.33266/1024-6177-2023-68-1-92-100

S.M. Rodneva1, D.V. Guryev1,2

Tritium Dosimetry at the Cellular Level

1A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

2N.N. Semenov Federal Research Center for Chemical Physics, Moscow, Russia

Contact person: Sofya Mikhailovna Rodneva: e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

CONTENTS

Introduction

1. Tritium radioisotope and its energy spectrum

2. Methods for calculating doses from radiation of radionuclides

2.1 General equation for absorbed dose rate

2.2 Absorbed dose rate versus average energy

2.3 Formulas for calculating dose and S-values ​​from radiation of radionuclides

2.4 Method of dose point nuclei

2.5 MIRD effective stopping power method

2.6 Geometric factor

3. Analysis of S-value calculations by various methods

3.1 Values ​​of the CSDA range at low initial electron energies

3.2 Comparison of S-value calculations for low energy electrons

3.3 Comparison of tritium S-value calculations

4. Evaluation of S-value calculations in the absence of spherical symmetry

Conclusion


Keywords: radiation dosimetry, radionuclides, tritium, electrons, S-value, cell, mathematical model

For citation: Rodneva SM, Guryev DV. Tritium Dosimetry at the Cellular Level. Medical Radiology and Radiation Safety. 2023;68(1):92–100. (In Russian). DOI: 10.33266/1024-6177-2023-68-1-92-100

 

References

1. Shiragap A. Comment on Estimation Methods of Absorbed Dose Due to Tritium. Journal of Radiation Research. 1971;2;2:73-86. DOI: 10.1269/jrr.12.73.

2. Alloni D., Cutaia C., Mariotti L., Friedland W., Ottolenghi A. Modeling Dose Deposition and DNA Damage Due to Low-Energy β-Emitters. Radiat. Res. 2014;182:322-330. DOI: 10.1667/RR13664.1. 

3. Klimanov V.A., Kramer-Ageyev Ye.A., Smirnov V.V. Dozimetriya Ioniziruyushchikh Izlucheniy = Dosimetry of Ionizing Radiation. Tutorial. Ed. Klimanov V.A. Moscow Publ., 2015. 740 p. (In Russ.).

4. Stabin M. Nuclear Medicine Dosimetry II. Phys. Med. Biol. 2006;51;1:187-202. DOI:10.1088/0031-9155/51/13/R12. 

5. Berger M., Cloutier R., Edwards C., Snyder W. Beta-Ray Dosimetry Calculations with the Use of Point Kernels. Medical radionuclides: Radiation Dose and Effects. Washington, DC, US Atomic Energy Commission, 1970. P. 63-86.

6. Prestwich W., Nunes J., Kwok C.S. Beta Dose Point Kernels for Radionuclides of Potential Use in Radioimmunotherapy. J. Nucl. Med. 1989;51:1036-1046.  

7. Simpkin D., Mackic T. EGS4 Monte Carlo Determination of the Beta Dose Kernel in Water. Med. Phys. 1990;17:179-186. DOI: 10.1118/1.596565. 

8. Timofeyev L.V. Raschetnyye Metody Dozimetrii Beta-Izlucheniya = Calculated Methods of Beta Radiation Dosimetry. Moscow Publ., 2017. 240 p. (In Russ.).

9. Robertson J., Hughes W., Quastler H., Morowitz H. Intranuclear Irradiation with Tritium-Labeled Thymidine. Proc. 1st. Natl. Biophys. Conf. New Haven, Yale University Press, 1959. P. 278-283.

10. Goodheart C. Radiation Dose Calculation in Cells Containing Intranuclear Tritium. Rad. Res. 1961;15:767-773. DOI: 10.2307/3571113. 

11. Saito M., Ishida M., Travis C. Dose-Modification Factor for Accumulated Dose to Cell Nucleus Due to Protein-Bound 3H. Health. Phys. 1989;56;6:869-874. DOI: 10.1097/00004032-198906000-00004. 

12. Stepanenko V.F., YAskova YE.K., Belukha I.G., Petriyev V.M., Skvortsov V.G., Kolyzhenkov T.V., Petukhov A.D., Dubov D.V. The Calculation of Internal Irradiation of Nano-, Micro- and Macro-Biostructures by Electrons, Beta Particles and Quantum Radiation of Different Energy for the Development and Research of New Radiopharmaceuticals in Nuclear Medicine. Radiatsiya i Risk = Radiation and Risk. 2015;24;1:35-57 (In Russ.). 

13. Howell R., Rao D., Sastry K. Macroscopic Dosimetry for Radioimmunotherapy: Nonuniform Activity Distributions in Solid Tumors. Med. Phys. 1989;16:66-74. DOI: 10.1118/1.596404. 

14. Goddu S., Howell R., Rao D. Cellular Dosimetry: Absorbed Fractions for Monoenergetic Electron and Alpha Particle Sources and S-Values for Radionuclides Uniformly Distributed in Different Cell Compartments. J. Nucl. Med. 1994;35:303-316. 

15. Goddu S., Howell R., Bouchet L., Bolch W., Rao D. Mird Cellular S Values: Self-Absorbed Dose Per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments. Reston, VA, USA, Society of Nuclear Medicine, 1997.

16. Cole A. Absorption of 20-eV to 50.000-eV Electron Beams and Plastic. Radiat. Res. 1969;38:7-33. 

17. Sastry K., Haydock C., Basha A., Rao D. Electron Dosimetry for Radioimmunotherapy: Optimal Electron Energy. Radial. Prot. Dosim. 1985;13:249-252. DOI: 10.1093/rpd/13.1-4.249.

18. Gardin I., Faraggi M., Hue E., Вок B. Modelling of the Relationship between Cell Dimensions and Mean Dose Delivered to the Cell Nucleus: Application to Five Radionuclides Used in Nuclear Medicine. Phys. Med. Biol. 1995;40:1001-1014. DOI: 10.1088/0031-9155/40/6/003. 

19. International Commission on Radiation Units and Measurements. Linear Energy Transfer. ICRU Report 16. 1970. 

20. International Commission on Radiation Units and Measurements. Stopping Powers for Electrons and Positrons. ICRU Report 37. 1984a.

21. International Commission on Radiation Units and Measurements. Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications. ICRU Report 90. 1996.

22. Siragusa M., Baioeco G., Fredericia P., Friedland W., Gser T., Ottolenghi A., et al. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters. Radiat Res. 2017;188;2:204-220. DOI: 10.1667/RR14683.1.

23. Incerti S., Kyriakou I., Bernal M., Bordage M., Francis Z., Guatelli S., Geant4-DNA Example Applications for Track Structure Simulations in Liquid Water: a Report from the Geant4-DNA Project. Med Phys. 2018;45:722-739. DOI: 10.1002/mp.13048. 

24. Berger M., Seltzer S. Tables of Energy Losses and Ranges of Electrons and Positrons. NASA SP-3012. 1964.

25. Akkerman A., Akkerman E. Characteristics of Electron Inelastic Interactions in Organic Compounds and Water over the Energy Range 20-10000 eV. Journal of Applied Physics. 1999;86;10:5809-5816. DOI: 10.1063/1.371597.

26. NCRP. Tritium and Other Radionuclide Labeled Organic Compounds Incorporated in Genetic Material. NCRP Report No. 63. Bethesda, National Council on Radiation Protection and Measurements, 1979.

27. Sefl M., Incerti S., Papamichacl G., Emfietzoglou D. Calculation of Cellular S-Values Using Geant4-DNA: The Effect of Cell Geometry. Appl. Radial. Isot. 2015;104:113-123. DOI: 10.1016/j.apradiso.2015.06.027. 

28. Salim R., Taherparvar P. Monte Carlo Single-Cell Dosimetry Using Geant4-DNA: the Effects of Cell Nucleus Displacement and Rotation on Cellular S Values. Radial. Environ Biophys. 2019;58:353-371. DOI: 10.1007/s00411-019-00788-z. 

29. Vaziri В., Wu H., Dhawan A., Du P., Howell R. MIRD Pamphlet No. 25: MIRDcell V2.0 Software Tool for Dosimetric Analysis of Biologic Response of Multicellular Populations. J. Nucl. Med. 2014;55:1557-1564. DOI: 10.2967/jnumed.113.131037. 

30. Chao T., Wang C., Li J., Li C., Tung C. Cellular- and Micro-Dosimetry of Heterogeneously Distributed Tritium. Int. J. Radiat. Biol. 2011;88;1-2:151-157. DOI: 10.3109/09553002.2011.595876. 

31. Siragusa M., Fredericia P., Jensen M., Groesser T. Radiobiological Effects of Tritiated Water Short-Term Exposure on V79 Clonogenic Cell Survival. Int. J. Radiat. Biol. 2018;94;2:157-165. DOI: 10.1080/09553002.2018.1419301. 

32. Saito M., Ishida M., Streffer C., Molls M. Estimation of Absorbed Dose in Cell Nuclei Due to DNA-Bound 3H. Health Phys. 1985;48:465-473. DOI: 10.1097/00004032-198504000-00009. 

33. Nettleton J., Lawson R. Cellular Dosimetry of Diagnostic Radionuclides for Spherical and Ellipsoidal Geometry. Phys. Med. Biol. 1996;41:1845-1854. DOI: 10.1088/0031-9155/41/9/018. 

34. Falzone N., Fernandez-Varea J., Flux G., Vallis K. Monte Carlo Evaluation of Auger Electron-Emitting Theranostic Radionuclides. J. Nucl. Med. 2015;56:1441-1446. DOI: 10.2967/jnumed.114.153502. 

35. Salim R., Taherparvar P. Cellular S Values in Spindle-Shaped Cells: a Dosimetry Study on more Realistic Cell Geometries Using Geant4-DNA Monte Carlo Simulation Toolkit. Annals of Nuclear Medicine. 2020;34:742-756. DOI:10.1007/s12149-020-01498-z. 

36. Ulanovsky A., Pröhl G. A Practical Method for Assessment of Dose Conversion Coefficients for Aquatic Biota. Radiat. Environ. Biophys. 2006;45;3:203-214. DOI: 10.1007/s00411-006-0061-4. 

37. Amato E., Lizio D., Baldari S. Absorbed Fractions for Electrons in Ellipsoidal Volumes. Phys. Med. Biol. 2011;56;2:357-365. DOI: 10.1088/0031-9155/56/2/005. 

38. Sazykina T.G., Kryshev L.I. Model for Calculating Energy Absorption from Incorporated Emitters of Monoenergetic Electrons in Natural Biota. Radiatsiya i Risk = Radiation and Risk. 2021;30;21:113-122 (In Russ.). 

 

 PDF (RUS) Full-text article (in Russian)

 

Conflict of interest. The authors declare no conflict of interest.

Financing. The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors.

Article received: 20.09.2022. Accepted for publication: 25.11.2022.